fitBetaBin function

Fitting the Beta-Binomial Distribution when binomial random variable, frequency and shape parameters a and b are given

Fitting the Beta-Binomial Distribution when binomial random variable, frequency and shape parameters a and b are given

The function will fit the Beta-Binomial distribution when random variables, corresponding frequencies and shape parameters are given. It will provide the expected frequencies, chi-squared test statistics value, p value, degree of freedom and over dispersion value so that it can be seen if this distribution fits the data.

fitBetaBin(x,obs.freq,a,b)

Arguments

  • x: vector of binomial random variables.
  • obs.freq: vector of frequencies.
  • a: single value for shape parameter alpha representing as a.
  • b: single value for shape parameter beta representing as b.

Returns

The output of fitBetaBin gives the class format fitBB and fit consisting a list

bin.ran.var binomial random variables.

obs.freq corresponding observed frequencies.

exp.freq corresponding expected frequencies.

statistic chi-squared test statistics.

df degree of freedom.

p.value probability value by chi-squared test statistic.

fitBB fitted values of dBetaBin.

NegLL Negative Log Likelihood value.

a estimated value for alpha parameter as a.

b estimated value for alpha parameter as b.

AIC AIC value.

over.dis.para over dispersion value.

call the inputs of the function.

Methods summary, print, AIC, residuals and fitted can be used to extract specific outputs.

Details

0<a,b 0 < a,b x=0,1,2,...,n x = 0,1,2,...,n obs.freq0 obs.freq \ge 0

NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Examples

No.D.D <- 0:7 #assigning the random variables Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies #estimating the parameters using maximum log likelihood value and assigning it parameters <- EstMLEBetaBin(No.D.D,Obs.fre.1,0.1,0.1) bbmle::coef(parameters) #extracting the parameters a and b aBetaBin <- bbmle::coef(parameters)[1] #assigning the parameter a bBetaBin <- bbmle::coef(parameters)[2] #assigning the parameter b #fitting when the random variable,frequencies,shape parameter values are given. fitBetaBin(No.D.D,Obs.fre.1,aBetaBin,bBetaBin) #estimating the parameters using moment generating function methods results <- EstMGFBetaBin(No.D.D,Obs.fre.1) results aBetaBin1 <- results$a #assigning the estimated a bBetaBin1 <- results$b #assigning the estimated b #fitting when the random variable,frequencies,shape parameter values are given. BB <- fitBetaBin(No.D.D,Obs.fre.1,aBetaBin1,bBetaBin1) #extracting the expected frequencies fitted(BB) #extracting the residuals residuals(BB)

References

\insertRef young2008poolingfitODBOD

\insertRef trenkler1996continuousfitODBOD

\insertRef hughes1993usingfitODBOD

See Also

mle2