These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for Gamma Distribution bounded between [0,1].
mazGAMMA(r,c,l)
Arguments
r: vector of moments.
c: single value for shape parameter c.
l: single value for shape parameter l.
Returns
The output of mazGAMMA gives the moments about zero in vector form.
Details
The probability density function and cumulative density function of a unit bounded Gamma distribution with random variable P are given by
gP(p)=γ(l)clpc−1[ln(1/p)]l−1
; 0≤p≤1
GP(p)=γ(l)Ig(l,cln(1/p))
; 0≤p≤1
l,c>0
The mean the variance are denoted by
E[P]=(c+1c)lvar[P]=(c+2c)l−(c+1c)2l
The moments about zero is denoted as
E[Pr]=(c+rc)l
r=1,2,3,...
Defined as γ(l) is the gamma function. Defined as Ig(l,cln(1/p))=∫0cln(1/p)tl−1e−tdt is the Lower incomplete gamma function.
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Examples
#plotting the random variables and probability valuescol <- rainbow(4)a <- c(1,2,5,10)plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",xlim = c(0,1),ylim = c(0,4))for(i in1:4){lines(seq(0,1,by=0.01),dGAMMA(seq(0,1,by=0.01),a[i],a[i])$pdf,col = col[i])}dGAMMA(seq(0,1,by=0.01),5,6)$pdf #extracting the pdf valuesdGAMMA(seq(0,1,by=0.01),5,6)$mean #extracting the meandGAMMA(seq(0,1,by=0.01),5,6)$var #extracting the variance#plotting the random variables and cumulative probability valuescol <- rainbow(4)a <- c(1,2,5,10)plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",xlim = c(0,1),ylim = c(0,1))for(i in1:4){lines(seq(0,1,by=0.01),pGAMMA(seq(0,1,by=0.01),a[i],a[i]),col = col[i])}pGAMMA(seq(0,1,by=0.01),5,6)#acquiring the cumulative probability valuesmazGAMMA(1.4,5,6)#acquiring the moment about zero valuesmazGAMMA(2,5,6)-mazGAMMA(1,5,6)^2#acquiring the variance for a=5,b=6#only the integer value of moments is taken here because moments cannot be decimalmazGAMMA(1.9,5.5,6)