mazGHGBeta function

Gaussian Hypergeometric Generalized Beta Distribution

Gaussian Hypergeometric Generalized Beta Distribution

These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Gaussian Hypergeometric Generalized Beta distribution bounded between [0,1].

mazGHGBeta(r,n,a,b,c)

Arguments

  • r: vector of moments.
  • n: single value for no of binomial trials.
  • a: single value for shape parameter alpha representing as a.
  • b: single value for shape parameter beta representing as b.
  • c: single value for shape parameter lambda representing as c.

Returns

The output of mazGHGBeta give the moments about zero in vector form.

Details

The probability density function and cumulative density function of a unit bounded Gaussian Hypergeometric Generalized Beta Distribution with random variable P are given by

gP(p)=1B(a,b)2F1(n,a;bn+1;1)2F1(n,a;bn+1;c)pa1(1p)b1cb+n(c+(1c)p)a+b+n g_{P}(p)= \frac{1}{B(a,b)}\frac{2F1(-n,a;-b-n+1;1)}{2F1(-n,a;-b-n+1;c)} p^{a-1}(1-p)^{b-1} \frac{c^{b+n}}{(c+(1-c)p)^{a+b+n}}

; 0p10 \le p \le 1

GP(p)=0p1B(a,b)2F1(n,a;bn+1;1)2F1(n,a;bn+1;c)ta1(1t)b1cb+n(c+(1c)t)a+b+ndt G_{P}(p)= \int^p_0 \frac{1}{B(a,b)}\frac{2F1(-n,a;-b-n+1;1)}{2F1(-n,a;-b-n+1;c)} t^{a-1}(1-t)^{b-1}\frac{c^{b+n}}{(c+(1-c)t)^{a+b+n}} \,dt

; 0p10 \le p \le 1

a,b,c>0 a,b,c > 0 n=1,2,3,... n = 1,2,3,...

The mean and the variance are denoted by

E[P]=01pB(a,b)2F1(n,a;bn+1;1)2F1(n,a;bn+1;c)pa1(1p)b1cb+n(c+(1c)p)a+b+ndp E[P]= \int^1_0 \frac{p}{B(a,b)}\frac{2F1(-n,a;-b-n+1;1)}{2F1(-n,a;-b-n+1;c)} p^{a-1}(1-p)^{b-1}\frac{c^{b+n}}{(c+(1-c)p)^{a+b+n}} \,dp var[P]=01p2B(a,b)2F1(n,a;bn+1;1)2F1(n,a;bn+1;c)pa1(1p)b1cb+n(c+(1c)p)a+b+ndp(E[p])2 var[P]= \int^1_0 \frac{p^2}{B(a,b)}\frac{2F1(-n,a;-b-n+1;1)}{2F1(-n,a;-b-n+1;c)} p^{a-1}(1-p)^{b-1}\frac{c^{b+n}}{(c+(1-c)p)^{a+b+n}} \,dp - (E[p])^2

The moments about zero is denoted as

E[Pr]=01prB(a,b)2F1(n,a;bn+1;1)2F1(n,a;bn+1;c)pa1(1p)b1cb+n(c+(1c)p)a+b+ndp E[P^r]= \int^1_0 \frac{p^r}{B(a,b)}\frac{2F1(-n,a;-b-n+1;1)}{2F1(-n,a;-b-n+1;c)} p^{a-1}(1-p)^{b-1}\frac{c^{b+n}}{(c+(1-c)p)^{a+b+n}} \,dp

r=1,2,3,...r = 1,2,3,...

Defined as B(a,b)B(a,b) as the beta function. Defined as 2F1(a,b;c;d)2F1(a,b;c;d) as the Gaussian Hypergeometric function.

NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Examples

#plotting the random variables and probability values col <- rainbow(5) a <- c(.1,.2,.3,1.5,2.15) plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values", xlim = c(0,1),ylim = c(0,10)) for (i in 1:5) { lines(seq(0,1,by=0.001),dGHGBeta(seq(0,1,by=0.001),7,1+a[i],0.3,1+a[i])$pdf,col = col[i]) } dGHGBeta(seq(0,1,by=0.01),7,1.6312,0.3913,0.6659)$pdf #extracting the pdf values dGHGBeta(seq(0,1,by=0.01),7,1.6312,0.3913,0.6659)$mean #extracting the mean dGHGBeta(seq(0,1,by=0.01),7,1.6312,0.3913,0.6659)$var #extracting the variance #plotting the random variables and cumulative probability values col <- rainbow(6) a <- c(.1,.2,.3,1.5,2.1,3) plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values", xlim = c(0,1),ylim = c(0,1)) for (i in 1:6) { lines(seq(0.01,1,by=0.001),pGHGBeta(seq(0.01,1,by=0.001),7,1+a[i],0.3,1+a[i]),col=col[i]) } pGHGBeta(seq(0,1,by=0.01),7,1.6312,0.3913,0.6659) #acquiring the cumulative probability values mazGHGBeta(1.4,7,1.6312,0.3913,0.6659) #acquiring the moment about zero values #acquiring the variance for a=1.6312,b=0.3913,c=0.6659 mazGHGBeta(2,7,1.6312,0.3913,0.6659)-mazGHGBeta(1,7,1.6312,0.3913,0.6659)^2 #only the integer value of moments is taken here because moments cannot be decimal mazGHGBeta(1.9,15,5,6,1)

References

\insertRef rodriguez2007generalizationfitODBOD

\insertRef pearson2009computationfitODBOD

See Also

hypergeo_powerseries