Gaussian Hypergeometric Generalized Beta Distribution
Gaussian Hypergeometric Generalized Beta Distribution
These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Gaussian Hypergeometric Generalized Beta distribution bounded between [0,1].
mazGHGBeta(r,n,a,b,c)
Arguments
r: vector of moments.
n: single value for no of binomial trials.
a: single value for shape parameter alpha representing as a.
b: single value for shape parameter beta representing as b.
c: single value for shape parameter lambda representing as c.
Returns
The output of mazGHGBeta give the moments about zero in vector form.
Details
The probability density function and cumulative density function of a unit bounded Gaussian Hypergeometric Generalized Beta Distribution with random variable P are given by
Defined as B(a,b) as the beta function. Defined as 2F1(a,b;c;d) as the Gaussian Hypergeometric function.
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Examples
#plotting the random variables and probability valuescol <- rainbow(5)a <- c(.1,.2,.3,1.5,2.15)plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",xlim = c(0,1),ylim = c(0,10))for(i in1:5){lines(seq(0,1,by=0.001),dGHGBeta(seq(0,1,by=0.001),7,1+a[i],0.3,1+a[i])$pdf,col = col[i])}dGHGBeta(seq(0,1,by=0.01),7,1.6312,0.3913,0.6659)$pdf #extracting the pdf valuesdGHGBeta(seq(0,1,by=0.01),7,1.6312,0.3913,0.6659)$mean #extracting the meandGHGBeta(seq(0,1,by=0.01),7,1.6312,0.3913,0.6659)$var #extracting the variance#plotting the random variables and cumulative probability valuescol <- rainbow(6)a <- c(.1,.2,.3,1.5,2.1,3)plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",xlim = c(0,1),ylim = c(0,1))for(i in1:6){lines(seq(0.01,1,by=0.001),pGHGBeta(seq(0.01,1,by=0.001),7,1+a[i],0.3,1+a[i]),col=col[i])}pGHGBeta(seq(0,1,by=0.01),7,1.6312,0.3913,0.6659)#acquiring the cumulative probability valuesmazGHGBeta(1.4,7,1.6312,0.3913,0.6659)#acquiring the moment about zero values#acquiring the variance for a=1.6312,b=0.3913,c=0.6659mazGHGBeta(2,7,1.6312,0.3913,0.6659)-mazGHGBeta(1,7,1.6312,0.3913,0.6659)^2#only the integer value of moments is taken here because moments cannot be decimalmazGHGBeta(1.9,15,5,6,1)