mazUNI function

Uniform Distribution Bounded Between [0,1]

Uniform Distribution Bounded Between [0,1]

These functions provide the ability for generating probability density values, cumulative probability density values and moments about zero values for the Uniform Distribution bounded between [0,1].

mazUNI(r)

Arguments

  • r: vector of moments

Returns

The output of mazUNI gives the moments about zero in vector form.

Details

Setting a=0a=0 and b=1b=1 in the Uniform Distribution a unit bounded Uniform Distribution can be obtained. The probability density function and cumulative density function of a unit bounded Uniform Distribution with random variable P are given by

gP(p)=1 g_{P}(p) = 1

0p10 \le p \le 1

GP(p)=p G_{P}(p) = p

0p10 \le p \le 1

The mean and the variance are denoted as

E[P]=1a+b=0.5 E[P]= \frac{1}{a+b}= 0.5 var[P]=(ba)212=0.0833 var[P]= \frac{(b-a)^2}{12}= 0.0833

Moments about zero is denoted as

E[Pr]=erberar(ba)=er1r E[P^r]= \frac{e^{rb}-e^{ra}}{r(b-a)}= \frac{e^r-1}{r}

r=1,2,3,...r = 1,2,3,...

NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Examples

#plotting the random variables and probability values plot(seq(0,1,by=0.01),dUNI(seq(0,1,by=0.01))$pdf,type = "l",main="Probability density graph", xlab="Random variable",ylab="Probability density values") dUNI(seq(0,1,by=0.05))$pdf #extract the pdf values dUNI(seq(0,1,by=0.01))$mean #extract the mean dUNI(seq(0,1,by=0.01))$var #extract the variance #plotting the random variables and cumulative probability values plot(seq(0,1,by=0.01),pUNI(seq(0,1,by=0.01)),type = "l",main="Cumulative density graph", xlab="Random variable",ylab="Cumulative density values") pUNI(seq(0,1,by=0.05)) #acquiring the cumulative probability values mazUNI(c(1,2,3)) #acquiring the moment about zero values #only the integer value of moments is taken here because moments cannot be decimal mazUNI(1.9)

References

\insertRef horsnell1957economicalfitODBOD

\insertRef johnson1995continuousfitODBOD

See Also

Uniform

or

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Uniform.html