These functions provide the ability for generating probability function values and cumulative probability function values for the Gamma Binomial Distribution.
pGammaBin(x,n,c,l)
Arguments
x: vector of binomial random variables.
n: single value for no of binomial trials.
c: single value for shape parameter c.
l: single value for shape parameter l.
Returns
The output of pGammaBin gives cumulative probability values in vector form.
Details
Mixing Gamma distribution with Binomial distribution will create the the Gamma Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.
The cumulative probability function is the summation of probability function values.
#plotting the random variables and probability valuescol <- rainbow(5)a <- c(1,2,5,10,0.2)plot(0,0,main="Gamma-binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))for(i in1:5){lines(0:10,dGammaBin(0:10,10,a[i],a[i])$pdf,col = col[i],lwd=2.85)points(0:10,dGammaBin(0:10,10,a[i],a[i])$pdf,col = col[i],pch=16)}dGammaBin(0:10,10,4,.2)$pdf #extracting the pdf valuesdGammaBin(0:10,10,4,.2)$mean #extracting the meandGammaBin(0:10,10,4,.2)$var #extracting the variancedGammaBin(0:10,10,4,.2)$over.dis.para #extracting the over dispersion value#plotting the random variables and cumulative probability valuescol <- rainbow(4)a <- c(1,2,5,10)plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable",ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))for(i in1:4){lines(0:10,pGammaBin(0:10,10,a[i],a[i]),col = col[i])points(0:10,pGammaBin(0:10,10,a[i],a[i]),col = col[i])}pGammaBin(0:10,10,4,.2)#acquiring the cumulative probability values