These functions provide the ability for generating probability function values and cumulative probability function values for the McDonald Generalized Beta Binomial Distribution.
pMcGBB(x,n,a,b,c)
Arguments
x: vector of binomial random variables.
n: single value for no of binomial trials.
a: single value for shape parameter alpha representing as a.
b: single value for shape parameter beta representing as b.
c: single value for shape parameter gamma representing as c.
Returns
The output of pMcGBB gives cumulative probability function values in vector form.
Details
Mixing Generalized Beta Type-1 Distribution with Binomial distribution the probability function value and cumulative probability function can be constructed and are denoted below.
The cumulative probability function is the summation of probability function values.
#plotting the random variables and probability valuescol <- rainbow(5)a <- c(1,2,5,10,0.6)plot(0,0,main="Mcdonald generalized beta-binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))for(i in1:5){lines(0:10,dMcGBB(0:10,10,a[i],2.5,a[i])$pdf,col = col[i],lwd=2.85)points(0:10,dMcGBB(0:10,10,a[i],2.5,a[i])$pdf,col = col[i],pch=16)}dMcGBB(0:10,10,4,2,1)$pdf #extracting the pdf valuesdMcGBB(0:10,10,4,2,1)$mean #extracting the meandMcGBB(0:10,10,4,2,1)$var #extracting the variancedMcGBB(0:10,10,4,2,1)$over.dis.para #extracting the over dispersion value#plotting the random variables and cumulative probability valuescol <- rainbow(4)a <- c(1,2,5,10)plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable",ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))for(i in1:4){lines(0:10,pMcGBB(0:10,10,a[i],a[i],2),col = col[i])points(0:10,pMcGBB(0:10,10,a[i],a[i],2),col = col[i])}pMcGBB(0:10,10,4,2,1)#acquiring the cumulative probability values