fitode0.1.1 package

Tools for Ordinary Differential Equations Model Fitting

initialize-odemodel-method

Constructor method of "odemodel" class

initialize-prior.ode-method

the initializer for prior.ode

initialize-solution.ode-method

Constructor for solution.ode class

jacobian-odemodel-method

Evaluate the jacobian of the gradients

jacobian

S4 generic for computing a jacobian

logLik-fitode-method

Extract log-likelihood

loglik.ode-class

Class representing log-likelihood models used to fit ode models

logLik.sensitivity

Calculate the derivative of the log-likelihood function

make_prior

Make a list containing log prior density and its gradient

ode.sensitivity

Calculate the derivative of the mean expression

ode.solve

solve ode models

odemodel-class

Class "odemodel" representing ode models

plot-fitode-missing-method

Plot a fitode object

plot-fitodeMCMC-missing-method

Plot a fitodeMCMC object

plot_internal

Internal function for plotting methods

predict-fitode-method

Prediction function for fitode objects

predict-fitodeMCMC-method

Prediction function for fitodeMCMC objects

prior.ode-class

Class representing prior models used to fit ode models

profile-fitode-method

Profile fitode objects

select_model

Select a log-likelihood model

select_prior

Select a prior model

set_link

Set up link functions for model parameters

show-fitode-method

Show fitode objects

show-fitodeMCMC-method

Show fitodeMCMC object

show-odemodel-method

Show the model

simulate-fitode-method

simulate fitode objects

simulate-odemodel-method

simulate model objects

simulate_internal

Internal function for simulation models

solution.de-class

Class "solution.ode". Result of solving ode modeld with/without sensit...

stdEr-fitode-method

Extract standard error from fitode objects

stdEr-fitodeMCMC-method

Extract standard error from fitodeMCMC objects

summary-fitode-method

Summarize fitode object

summary-fitodeMCMC-method

Summarize fitodeMCMC object

Transform-loglik.ode-method

Transform the model

Transform-odemodel-method

Transform the model

Transform-prior.ode-method

Transform the prior model

Transform

S4 generic for transforming an object

update-fitode-method

Update fitode fits

update-fitodeMCMC-method

Update fitodeMCMC fits

vcov-fitode-method

Extract variance-covariance matrix from fitode objects

vcov-fitodeMCMC-method

Extract variance-covariance matrix from fitodeMCMC objects

apply_link

Apply link functions to model parameters

blowfly

Nicholson's blowfly data

check_link

Check link functions

coef-fitode-method

Extract model coefficients from fitode objects

coef-fitodeMCMC-method

Extract model coefficients from fitodeMCMC objects

confint-fitode-method

Calculate confidence intervals from fitode objects for model parameter...

confint-fitodeMCMC-method

Calculate credible intervals from fitodeMCMC objects for model paramet...

dfun

Taylor expansion of digamma(a+b) for a>>b

dfun2

Taylor expansion of trigamma(a+b) (?) for a>>b

Eval-loglik.ode-method

Evaluate the log-likelihood model

Eval

S4 generic for evaluating an object

fitode-class

Class "fitode". Result of ode fitting based on Maximum Likelihood Esti...

fitode

Fit ordinary differential equations model

fitodeMCMC-class

Class "fitodeMCMC". Result of ode fitting based on Markov Chain Monte ...

fitodeMCMC

Fit ordinary differential equations model using MCMC

fixpar

Fix parameters of an ODE model

grad-loglik.ode-method

Evaluate the gradient of a likelihood model

grad-odemodel-method

Evaluate the gradients of a model

grad

S4 generic for computing a gradient

hessian

S4 generic for computing a hessian

initialize-loglik.ode-method

The initializer for loglik.ode

Methods and functions for fitting ordinary differential equations (ODE) model in 'R'. Sensitivity equations are used to compute the gradients of ODE trajectories with respect to underlying parameters, which in turn allows for more stable fitting. Other fitting methods, such as MCMC (Markov chain Monte Carlo), are also available.

  • Maintainer: Sang Woo Park
  • License: GPL (>= 2)
  • Last published: 2022-10-29