StatMixRHLP-class function

A Reference Class which contains statistics of a mixture of RHLP models.

A Reference Class which contains statistics of a mixture of RHLP models.

StatMixRHLP contains all the statistics associated to a MixRHLP model, in particular the E-Step (and C-Step) of the (C)EM algorithm. class

Fields

  • pi_jkr: Array of size (nm,R,K)(nm, R, K) representing the logistic proportion for cluster k.

  • tau_ik: Matrix of size (n,K)(n, K) giving the posterior probabilities (fuzzy segmentation matrix) that the curve yiy_{i}

     originates from the $k$-th RHLP model.
    
  • z_ik: Hard segmentation logical matrix of dimension (n,K)(n, K)

     obtained by the Maximum a posteriori (MAP) rule: $z_ik = 1 if z_i = arg max_k tau_ik; 0 otherwise$.
    
  • klas: Column matrix of the labels issued from z_ik. Its elements are klas[i]=ziklas[i] = z_i, i=1,,ni = 1,\dots,n.

  • gamma_ijkr: Array of size (nm,R,K)(nm, R, K) giving the posterior probabilities that the observation yijy_{ij}

     originates from the $r$-th regime of the $k$-th RHLP model.
    
  • polynomials: Array of size (m,R,K)(m, R, K) giving the values of the estimated polynomial regression components.

  • weighted_polynomials: Array of size (m,R,K)(m, R, K) giving the values of the estimated polynomial regression components weighted by the prior probabilities pi_jkr.

  • Ey: Matrix of size (m, K). Ey is the curve expectation (estimated signal): sum of the polynomial components weighted by the logistic probabilities pi_jkr.

  • loglik: Numeric. Observed-data log-likelihood of the MixRHLP model.

  • com_loglik: Numeric. Complete-data log-likelihood of the MixRHLP model.

  • stored_loglik: Numeric vector. Stored values of the log-likelihood at each EM iteration.

  • stored_com_loglik: Numeric vector. Stored values of the Complete log-likelihood at each EM iteration.

  • BIC: Numeric. Value of BIC (Bayesian Information Criterion).

  • ICL: Numeric. Value of ICL (Integrated Completed Likelihood).

  • AIC: Numeric. Value of AIC (Akaike Information Criterion).

  • log_fk_yij: Matrix of size (n,K)(n, K) giving the values of the probability density function f(yizi=k,x,Ψ)f(y_{i} | z_i = k, x, \Psi), c("i=\ni =\n", "1,dots,n 1,\\dots,n").

  • log_alphak_fk_yij: Matrix of size (n,K)(n, K) giving the values of the logarithm of the joint probability density function f(yi,zi=kx,Ψ)f(y_{i}, z_{i} = k | x, \Psi), i=1,,ni = 1,\dots,n.

  • log_gamma_ijkr: Array of size (nm,R,K)(nm, R, K) giving the logarithm of gamma_ijkr.

Methods

  • computeStats(paramMixRHLP): Method used in the EM algorithm to compute statistics based on parameters provided by the object paramMixRHLP of class ParamMixRHLP .

  • CStep(reg_irls): Method used in the CEM algorithm to update statistics.

  • EStep(paramMixRHLP): Method used in the EM algorithm to update statistics based on parameters provided by the object paramMixRHLP of class ParamMixRHLP

     (prior and posterior probabilities).
    
  • MAP(): MAP calculates values of the fields z_ik and klas

     by applying the Maximum A Posteriori Bayes allocation rule.
     
      $z_ik = 1 if z_i = arg max_k tau_ik; 0 otherwise$.
    

See Also

ParamMixRHLP

  • Maintainer: Florian Lecocq
  • License: GPL (>= 3)
  • Last published: 2019-08-06