Compute the Riemann zeta function, the Hurwitz zeta function, or Lerch's transcendent. Lerch's transcendent Φ(z,s,a)
is defined by [REMOVE_ME]∑k=0∞(k+a)szksumk=0,1,…zk/(k+a)s[REMOVEME2]
for Mod(z)<1 and by analytic continuation elsewhere in the z-plane. The Riemann and Hurwitz zeta functions are the special cases ζ(s)=Φ(1,s,1) and ζ(s,a)=Φ(1,s,a), respectively. See the references for restrictions on s and a.
Description
Compute the Riemann zeta function, the Hurwitz zeta function, or Lerch's transcendent. Lerch's transcendent Φ(z,s,a)
is defined by
k=0∑∞(k+a)szksumk=0,1,…zk/(k+a)s
for Mod(z)<1 and by analytic continuation elsewhere in the z-plane. The Riemann and Hurwitz zeta functions are the special cases ζ(s)=Φ(1,s,1) and ζ(s,a)=Φ(1,s,a), respectively. See the references for restrictions on s and a.
arb_dirichlet_zeta(s, prec = flintPrec())acb_dirichlet_zeta(s, prec = flintPrec())arb_dirichlet_hurwitz(s, a =1, prec = flintPrec())acb_dirichlet_hurwitz(s, a =1, prec = flintPrec())## arb_dirichlet_lerch_phi(z = 1, s, a = 1, prec = flintPrec()) acb_dirichlet_lerch_phi(z =1, s, a =1, prec = flintPrec())
Arguments
z, s, a: numeric, complex, arb, or acb vectors.
prec: a numeric or slong vector indicating the desired precision as a number of bits.
Returns
An arb or acb vector storing function values with error bounds. Its length is the maximum of the lengths of the arguments or zero (zero if any argument has length zero). The arguments are recycled as necessary.