fnets0.1.6 package

Factor-Adjusted Network Estimation and Forecasting for High-Dimensional Time Series

yw.ic

Information criterion for factor-adjusted VAR estimation

abc.factor.number

Factor number estimator of Alessi, Barigozzi and Capasso (2010)

Bartlett.weights

Bartlett weights

common.irf.estimation

Blockwise VAR estimation under GDFM

common.predict

Forecasting the factor-driven common component

dyn.pca

Dynamic PCA

ebic

extended Bayesian Information Criterion

f.func.full

full likelihood

factor.number

Factor number selection methods

fnets.factor.model

Factor model estimation

fnets

Factor-adjusted network estimation

fnets.var.internal

internal function for fnets.var

fnets.var

l1-regularised Yule-Walker estimation for VAR processes

hl.factor.number

Factor number estimator of Hallin and Liška (2007)

idio.predict

Forecasting idiosyncratic VAR process

logfactorial

logarithmic factorial of n

network.fnets

Convert networks estimated by fnets into igraph objects

network

Convert networks into igraph objects

par.lrpc

Parametric estimation of long-run partial correlations of factor-adjus...

plot.factor.number

Plot factor number

plot.fnets

Plotting the networks estimated by fnets

plot.threshold

Plotting the thresholding procedure

plot_internal

internal function for plot.fnets and network

predict.fm

Forecasting for factor models

predict.fnets

Forecasting by fnets

print.factor.number

Print factor number

print.fm

Print factor model

print.fnets

Print fnets

print.threshold

Print threshold

sim.restricted

Simulate data from a restricted factor model

sim.unrestricted

Simulate data from an unrestricted factor model

sim.var

Simulate a VAR(1) process

static.pca

Static PCA

threshold

Threshold the entries of the input matrix at a data-driven level

tuning_plot

Plotting output for tuning parameter selection in fnets

var.dantzig

Dantzig selector-type estimator of VAR processes via constrained l1-...

var.lasso

Lasso-type estimator of VAR processes via l1-regularised M-estimat...

yw.cv

Cross validation for factor-adjusted VAR estimation

Implements methods for network estimation and forecasting of high-dimensional time series exhibiting strong serial and cross-sectional correlations under a factor-adjusted vector autoregressive model. See Barigozzi, Cho and Owens (2024+) <doi:10.1080/07350015.2023.2257270> for further descriptions of FNETS methodology and Owens, Cho and Barigozzi (2024+) <arXiv:2301.11675> accompanying the R package.

  • Maintainer: Haeran Cho
  • License: GPL (>= 3)
  • Last published: 2024-01-23