arh_rkhs function

Autoregressive Hilbertian Model using RKHS

Autoregressive Hilbertian Model using RKHS

Estimates an autoregresive Hilbertian model of order 1 for functional time series. The temporal dependence is estimated in the Hilbert projection space which has a reproducing kernel as proposed in Hernández et al (2021) arXiv:2105.13627 and Wang et al (2020) arXiv:2011.13993.

arh_rkhs(fdata)

Arguments

  • fdata: an fdata object containing the functional objects and the lambda coefficients of the d dimensional RKHS representation.

Returns

  • fdata: smoothed curves. - lambda_cent: centered coefficients of the d dimensional RKHS representation.

  • lambda_ce: average coefficients of the d dimensional RKHS representation. - rho: autocorrelation operator computed as: Gamma_0$$Psi = Gamma1Gamma_1. Gamma0Gamma_0 correspond to the Covariance and Gamma0Gamma_0 correspond to the Cross-Covariance (of lag 1) operators, both estimated using the coefficients lambdalambda.

References

N. Hernández, J. Cugliari, J. Jacques. Simultaneous Predictive Bands for Functional Time Series using Minimum Entropy Sets. arXiv:2105.13627 (2021). D. Wang, Z. Zhao, R. Willett, C. Y. Yau, Functional autoregressive processes in reproducing kernel hilbert spaces, arXiv preprint arXiv:2011.13993 (2020).

Author(s)

N. Hernández and J. Cugliari

  • Maintainer: Nicolás Hernández
  • License: GPL (>= 3)
  • Last published: 2021-06-07

Useful links