functional data in rkhs
Representing functinal data using Reproducing Kernel Hilbert Spaces. Approximate each curve with a smooth function using a kernel function.
fdata_rkhs(curves, rk, gamma = 1e-05)
curves
: a data matrix with observations (curves) in rows and the discretizations points in columns.rk
: kernek function rk object.gamma
: regularization parameter. Defaoult value = 1e-5.data: input curves. - fdata: smoothed curves.
lambda: coefficients of the (stable) and d dimensional RKHS representation. - alpha: coefficients of the RKHS expansion.
gamma: regularization parameter.
With this function each function can be represented with a vector in R^d.
t = 1:50 curves = matrix(sin(t)+rnorm(length(t)),nrow=1) f.data <- fdata_rkhs(curves, rk = rk(t,sigma = 0.01)) plot(t,curves, xlab='time', ylab='PM10 dataset', col='gray', lty=1, type='b') lines(t,f.data$fdata, col='blue', lty=1)
A. Muñoz, J. González, Representing functional data using support vector machines, Pattern Recognition Letters 31 (2010) 511–516. doi:10.1016/j.patrec.2009.07.014.
N. Hernández and J. Cugliari
Useful links