simfrail function

Simulate survival data and fit models

Simulate survival data and fit models

Generates simulated clustered survival data by repeatedly generating data, using a shared frailty model, and fitting the models. Respective arguments are passed to genfrail and fitfrail, and the resulting parameter estimates are aggregated and summarized.

simfrail(reps, genfrail.args, fitfrail.args, Lambda.times, vcov.args = list(), cores = 0, skip.SE = FALSE)

Arguments

  • reps: number of times to repeat the simulation
  • genfrail.args: list of arguments to pass to genfrail
  • fitfrail.args: list of arguments to pass to fitfrail
  • Lambda.times: vector of time points to obtain baseline hazard estimates at
  • vcov.args: list of arguments to pass to vcov.fitfrail for variance estimates. This is mainly used to specify whether bootstrap or estimated variances should be obtained.
  • cores: integer; if > 0, the number of cores to use; if < 0, the number of cores not to use; if 0, use all available cores
  • skip.SE: logical value, whether to skip the standard error estimates (saves time)

Returns

A simfrail object that is essentially a data.frame of the resulting parameter estimates. Each row is a single run, and columns are as follows.

  • seed: the seed used for the run

  • runtime: the time it took to fit the model

  • N: number of clusters

  • mean.K: average cluster size

  • cens: empirical censorship

  • beta: true regression coefficients

  • hat.beta: estimated regression coefficients

  • se.beta: standard error of each regression coefficient

  • theta: true frailty distribution parameters

  • hat.theta: estimated frailty distribution parameters

  • se.theta: standard error of each frailty distribution parameter

  • Lambda: true cumulative baseline hazard at each Lambda.times point

  • hat.Lambda: estimated cumulative baseline hazard at each Lambda.times point

  • se.Lambda: standard error at each Lambda.times point

Author(s)

John. V Monaco, Malka Gorfine, Li Hsu

See Also

genfrail, fitfrail

Examples

## Not run: sim <- simfrail(reps=100, genfrail.args=alist( N=50, K=2, beta=c(log(2),log(3)), frailty="gamma", theta=2, Lambda_0 = function(t, tau=4.6, C=0.01) (C*t)^tau), fitfrail.args=alist( formula=Surv(time, status) ~ Z1 + Z2 + cluster(family), frailty="gamma"), Lambda.times=1:120, cores = 0) # Summarize the results summary(sim) # Plot the residuals plot(sim, "residuals") ## End(Not run)
  • Maintainer: Vinnie Monaco
  • License: LGPL-2
  • Last published: 2023-08-13