Compute variance/covariance matrix for fitfrail model
Compute variance/covariance matrix for fitfrail model
Compute the variance/covariance matrix for fitfrail estimated parameters. This can be performed by a an asymptotically-normal and consistent variance estimator or a weighted bootstrap. The resulting covariance matrix is cached in the fitted object and later retrieved if the same arguments to vcov.fitfrail are supplied.
## S3 method for class 'fitfrail'vcov(object, boot=FALSE, B=100, Lambda.times=NULL, cores=0,...)
Arguments
object: a fitfrail object
boot: logical value, whether to use a weighted bootstrap. If boot == FALSE, a consistent estimator is used and the cumulative baseline hazard variance will not be estimated.
B: number of repetitions in the weighted bootstrap.
Lambda.times: time points where the variance/covariance should be evaluated. If Lambda.times == NULL, then the points where the cumulative baseline hazard increases (where failures occur) are used.
cores: number of cores to use when computing the covariance matrix in parallel
...: extra arguments are not used
Returns
variance/covariance matrix for the fitfrail model parameters
See Also
fitfrail
Examples
## Not run:dat <- genfrail(N=200, K=2, beta=c(log(2),log(3)), frailty="gamma", theta=2, censor.rate=0.35, Lambda_0=function(t, tau=4.6, C=0.01)(C*t)^tau)fit <- fitfrail(Surv(time, status)~ Z1 + Z2 + cluster(family), dat, frailty="gamma")# boot=TRUE will give the weighted bootstrap variance estimatesCOV <- vcov(fit, boot=FALSE)COV
## End(Not run)