vcov.fitfrail function

Compute variance/covariance matrix for fitfrail model

Compute variance/covariance matrix for fitfrail model

Compute the variance/covariance matrix for fitfrail estimated parameters. This can be performed by a an asymptotically-normal and consistent variance estimator or a weighted bootstrap. The resulting covariance matrix is cached in the fitted object and later retrieved if the same arguments to vcov.fitfrail are supplied.

## S3 method for class 'fitfrail' vcov(object, boot=FALSE, B=100, Lambda.times=NULL, cores=0, ...)

Arguments

  • object: a fitfrail object
  • boot: logical value, whether to use a weighted bootstrap. If boot == FALSE, a consistent estimator is used and the cumulative baseline hazard variance will not be estimated.
  • B: number of repetitions in the weighted bootstrap.
  • Lambda.times: time points where the variance/covariance should be evaluated. If Lambda.times == NULL, then the points where the cumulative baseline hazard increases (where failures occur) are used.
  • cores: number of cores to use when computing the covariance matrix in parallel
  • ...: extra arguments are not used

Returns

variance/covariance matrix for the fitfrail model parameters

See Also

fitfrail

Examples

## Not run: dat <- genfrail(N=200, K=2, beta=c(log(2),log(3)), frailty="gamma", theta=2, censor.rate=0.35, Lambda_0=function(t, tau=4.6, C=0.01) (C*t)^tau) fit <- fitfrail(Surv(time, status) ~ Z1 + Z2 + cluster(family), dat, frailty="gamma") # boot=TRUE will give the weighted bootstrap variance estimates COV <- vcov(fit, boot=FALSE) COV ## End(Not run)
  • Maintainer: Vinnie Monaco
  • License: LGPL-2
  • Last published: 2023-08-13