fts.cov.structure function

Estimate autocovariance and cross-covariances operators

Estimate autocovariance and cross-covariances operators

This function is used to estimate a collection of cross-covariances operators of two stationary functional series.

fts.cov.structure(X, Y = X, lags = 0)

Arguments

  • X: an object of class fd containing TT functional observations.
  • Y: an object of class fd containing TT functional observations.
  • lags: an integer-valued vector (1,,K)(\ell_1,\ldots, \ell_K) containing the lags for which covariances are calculated.

Returns

An object of class fts.timedom. The list contains the following components:

  • operators \quad an array. Element [,,k] contains the covariance matrix of the coefficient vectors of the two time series related to lag k\ell_k.
  • lags \quad the lags vector from the arguments.
  • basisX \quad X$basis, an object of class basis.fd (see create.basis)
  • basisY \quad Y$basis, an object of class basis.fd (see create.basis)

Details

Let X1(u),,XT(u)X_1(u),\ldots, X_T(u) and Y1(u),,YT(u)Y_1(u),\ldots, Y_T(u) be two samples of functional data. This function determines empirical lagged covariances between the series (Xt(u))(X_t(u)) and (Yt(u))(Y_t(u)). More precisely it determines

(c^hXY(u,v) ⁣:hlags), (\widehat{c}^{XY}_h(u,v)\colon h\in lags ),

where c^hXY(u,v)\widehat{c}^{XY}_h(u,v) is the empirical version of the covariance kernel Cov(Xh(u),Y0(v))\mathrm{Cov}(X_h(u),Y_0(v)). For a sample of size TT we set μ^X(u)=1Tt=1TXt(u)\hat\mu^X(u)=\frac{1}{T}\sum_{t=1}^T X_t(u) and μ^Y(v)=1Tt=1TYt(v)\hat\mu^Y(v)=\frac{1}{T}\sum_{t=1}^T Y_t(v). Now for h0h \geq 0

1Tt=1Th(Xt+h(u)μ^X(u))(Yt(v)μ^Y(v)) \frac{1}{T}\sum_{t=1}^{T-h} (X_{t+h}(u)-\hat\mu^X(u))(Y_t(v)-\hat\mu^Y(v))

and for h<0h < 0

1Tt=h+1T(Xt+h(u)μ^X(u))(Yt(v)μ^Y(v)). \frac{1}{T}\sum_{t=|h|+1}^{T} (X_{t+h}(u)-\hat\mu^X(u))(Y_t(v)-\hat\mu^Y(v)).

Since Xt(u)=b1(u)xtX_t(u)=\boldsymbol{b}_1^\prime(u)\mathbf{x}_t and Yt(u)=ytb2(u)Y_t(u)=\mathbf{y}_t^\prime \boldsymbol{b}_2(u) we can write

c^hXY(u,v)=b1(u)C^xyb2(v), \widehat{c}^{XY}_h(u,v)=\boldsymbol{b}_1^\prime(u)\widehat{C}^{\mathbf{xy}}\boldsymbol{b}_2(v),

where C^xy\widehat{C}^{\mathbf{xy}} is defined as for the function ``cov.structure'' for series of coefficient vectors (xt ⁣:1tT)(\mathbf{x}_t\colon 1\leq t\leq T) and (yt ⁣:1tT)(\mathbf{y}_t\colon 1\leq t\leq T).

Examples

# Generate an autoregressive process fts = fts.rar(d=3) # Get covariance at lag 0 fts.cov.structure(fts, lags = 0) # Get covariance at lag 10 fts.cov.structure(fts, lags = 10) # Get entire covariance structure between -20 and 20 fts.cov.structure(fts, lags = -20:20) # Compute covariance with another process fts0 = fts + fts.rma(d=3) fts.cov.structure(fts, fts0, lags = -2:2)

See Also

The multivariate equivalent in the freqdom package: cov.structure

  • Maintainer: Kidzinski L.
  • License: GPL-3
  • Last published: 2022-04-19

Useful links