fts.plot.filters function

Plot kernels

Plot kernels

fts.plot.filters(A, Ndpc = 1, lags = -3:3, one.plot = FALSE, ...)

Arguments

  • A: a functional filter sequence given as object of class fts.timedom.
  • Ndpc: if Ndpc = k the first k filter sequences are plotted.
  • lags: number of lags to plot.
  • one.plot: if TRUE then functional filters corresponding belonging to the respective scores will all be plotted in the same graph.
  • ...: arguments col, lwd, lty passed to plot

Examples

# Load example PM10 data from Graz, Austria data(pm10) # loads functional time series pm10 to the environment X = center.fd(pm10) # Compute functional dynamic principal components with only one component res.dpca = fts.dpca(X, Ndpc = 1, freq=(-25:25/25)*pi) # leave default freq for higher precision # Plot Functional Dynamic Principal Component Filters fts.plot.filters(res.dpca$filters)
  • Maintainer: Kidzinski L.
  • License: GPL-3
  • Last published: 2022-04-19

Useful links