Spec_compare_localize_freq function

Compare the spectral density operator of two Functional Time Series and localize frequencies at which they differ.

Compare the spectral density operator of two Functional Time Series and localize frequencies at which they differ.

Spec_compare_localize_freq(X, Y, B.T = (dim(X)[1])^(-1/5), W, autok = 2, subgrid.density, verbose = 0, demean = FALSE, K.fixed = NA, subgrid.density.relative.to.bandwidth)

Arguments

  • X,Y: The T×nbasisT \times nbasis matrices of containing the coordinates, expressed in some functional basis, of the two FTS that to be compared. expressed in a basis.
  • B.T: The bandwidth of frequencies over which the periodogram operator is smoothed. If B.T=0, the periodogram operator is returned.
  • W: The weight function used to smooth the periodogram operator. Set by default to be the Epanechnikov kernel
  • autok: A variable used to specify if (and which) pseudo-AIC criterion is used to select the truncation parameter KK.
  • subgrid.density: Only used if subgrid=TRUE. Specifies the approximate number of frequencies within the bandwidth over which the periodogram operator is smoothed.
  • verbose: A variable to show the progress of the computations. By default, verbose=0.
  • demean: A logical variable to choose if the FTS is centered before computing its spectral density operator.
  • K.fixed: The value of K used if autok=0.
  • subgrid.density.relative.to.bandwidth: logical parameter to specify if subgrid.density is specified relative to the bandwidth parameter B.T

Details

X,Y must be of equal size T.len×dT.len \times d, where T.len is the length of the time series, and dd is the number of basis functions. Each row corresponds to a time point, and each column corresponds to the coefficient of the corresponding basis function of the FTS.

autok=0 returns the p-values for K=1,,\codeK.fixedK=1, \ldots, \code{K.fixed}. autok=1 uses the AIC criterion of Tavakoli & Panaretos (2015), which is a generalization of the pseudo-AIC introduced in Panaretos et al (2010). autok=2 uses the AIC* criterion of Tavakoli & Panaretos (2015), which is an extension of the AIC criterion that takes into account the difficulty associated with the estimation of eigenvalues of a compact operator.

Examples

ma.scale2=ma.scale1=c(-1.4,2.3,-2) ma.scale2[3] = ma.scale1[3]+.0 a1=Generate_filterMA(10, 10, MA.len=3, ma.scale=ma.scale1) a2=Generate_filterMA(10, 10, MA.len=3, ma.scale=ma.scale2) X=Simulate_new_MA(a1, T.len=512, noise.type='wiener') Y=Simulate_new_MA(a2, T.len=512, noise.type='wiener') ans0=Spec_compare_localize_freq(X, Y, W=Epanechnikov_kernel, autok=2, subgrid.density=10, verbose=0, demean=FALSE, subgrid.density.relative.to.bandwidth=TRUE) plot(ans0) plot(ans0, method='fdr') PvalAdjust(ans0, method='fdr') ## print FDR adjusted p-values abline(h=.05, lty=3) ans0=Spec_compare_localize_freq(X, Y, W=Epanechnikov_kernel, autok=0, subgrid.density=10, verbose=0, demean=FALSE, subgrid.density.relative.to.bandwidth=TRUE, K.fixed=4) ## fixed values of K plot(ans0) plot(ans0, 'fdr') plot(ans0, 'holm') PvalAdjust(ans0, method='fdr') rm(ans0)

References

Tavakoli, Shahin and Panaretos, Victor M. "Detecting and LocalizingDifferences in Functional Time Series Dynamics: A Case Study inMolecular Biophysics", 2014, under revision

Panaretos, Victor M., David Kraus, and John H. Maddocks. "Second-ordercomparison of Gaussian random functions and the geometry of DNAminicircles." Journal of the American Statistical Association 105.490(2010): 670-682.

  • Maintainer: Shahin Tavakoli
  • License: GPL-2
  • Last published: 2015-09-08

Useful links