irregFunData-class function

A class for irregularly sampled functional data

A class for irregularly sampled functional data

The irregFunData class represents functional data that is sampled irregularly on one-dimensional domains. The two slots represent the observation points (x-values) and the observed function values (y-values). class

irregFunData(argvals, X) ## S4 method for signature 'list,list' irregFunData(argvals, X) ## S4 method for signature 'irregFunData' show(object) ## S4 method for signature 'irregFunData' names(x) ## S4 replacement method for signature 'irregFunData' names(x) <- value ## S4 method for signature 'irregFunData' str(object, ...) ## S4 method for signature 'irregFunData' summary(object, ...)

Arguments

  • argvals: A list of numerics, corresponding to the observation points for each realization XiX_i (see Details).
  • X: A list of numerics, corresponding to the observed functions XiX_i (see Details).
  • object: An irregFunData object.
  • x: The irregFunData object.
  • value: The names to be given to the irregFunData curves.
  • ...: Other parameters passed to summary.

Details

Irregular functional data are realizations of a random process

X:TIR,X:T>IR, X:\mathcal{T} \to \mathrm{IR},X: T -> IR,

where each realization XiX_i of XX is given on an individual grid TiTT_i \subset T of observation points. As for the funData class, each object of the irregFunData

class has two slots; the argvals slot represents the observation points and the X slot represents the observed data. In contrast to the regularly sampled data, both slots are defined as lists of vectors, where each entry corresponds to one observed function:

  • argvals[[i]] contains the vector of observation points TiT_i for the i-th function,
  • X[[i]] contains the corresponding observed data Xi(tij),tijTiX_i(t_{ij}), t_{ij} \in T_i.

Generic functions for the irregFunData class include a print method, plotting and basic arithmetics . Further methods for irregFunData:

  • dimSupp, nObs: Informations about the support dimensions and the number of observations,
  • getArgvals, extractObs: Getting/setting slot values (instead of accessing them directly via irregObject@argvals, irregObject@X) and extracting single observations or data on a subset of the domain,
  • integrate, norm: Integrate all observations over their domain or calculating the L2L^2 norm.

An irregFunData object can be coerced to a funData object using as.funData(irregObject). The regular functional data object is defined on the union of all observation grids of the irregular object. The value of the new object is marked as missing (NA) for observation points that are in the union, but not in the original observation grid.

Methods (by generic)

  • irregFunData(argvals = list, X = list): Constructor for irregular functional data objects.
  • show(irregFunData): Print basic information about the irregFunData object in the console. The default console output for irregFunData objects.
  • names(irregFunData): Get the names of the irregFunData object.
  • names(irregFunData) \<- value: Set the names of the irregFunData object.
  • str(irregFunData): A str method for irregFunData objects, giving a compact overview of the structure.
  • summary(irregFunData): A summary method for irregFunData objects.

Functions

  • irregFunData(): Constructor for irregular functional data objects

Slots

  • argvals: A list of numerics, representing the observation grid TiT_i

     for each realization $X_i$ of $X$.
    
  • X: A list of numerics, representing the values of each observation XiX_i of XX on the corresponding observation points TiT_i.

Warning

Currently, the class is implemented only for functional data on one-dimensional domains c("T\nT\n", "subsetIR \\subset IR").

Examples

# Construct an irregular functional data object i1 <- irregFunData(argvals = list(1:5, 2:4), X = list(2:6, 3:5)) # Display in the console i1 # Summarize summary(i1) # A more realistic object argvals <- seq(0,2*pi, 0.01) ind <- replicate(11, sort(sample(1:length(argvals), sample(5:10,1)))) # sample observation points argvalsIrreg <- lapply(ind, function(i){argvals[i]}) i2 <- irregFunData(argvals = argvalsIrreg, X = mapply(function(x, a){a * sin(x)}, x = argvalsIrreg, a = seq(0.75, 1.25, by = 0.05))) # Display/summary gives basic information i2 summary(i2) # Use the plot function to get an impression of the data plot(i2)

See Also

funData, multiFunData