simulateData function

Simulate data for funLBM

Simulate data for funLBM

Simulate data according to the funLBM model with K=4 groups for rows and L=3 groups for columns.

simulateData(n = 100, p = 100, t = 30)

Arguments

  • n: The number of rows (individuals) of the simulated data array,
  • p: The number of columns (functional variables) of the simulated data array,
  • t: The number of measures for the functions of the simulated data array.

Returns

The resulting object contains: - data: data array of size n x p x t

  • row_clust: Group memberships of rows

  • col_clust: Group memberships of columns

References

C. Bouveyron, L. Bozzi, J. Jacques and F.-X. Jollois, The Functional Latent Block Model for the Co-Clustering of Electricity Consumption Curves, Journal of the Royal Statistical Society, Series C, 2018 (https://doi.org/10.1111/rssc.12260).

See Also

funLBM

Examples

set.seed(12345) # Simulate data and co-clustering X = simulateData(n = 30, p = 30, t = 15) # Co-clustering with funLBM out = funLBM(X$data,K=4,L=3) # Visualization of results plot(out,type='blocks') plot(out,type='proportions') plot(out,type='means') # Evaluating clustering results ari(out$col_clust,X$col_clust) ari(out$row_clust,X$row_clust)
  • Maintainer: Charles Bouveyron
  • License: GPL (>= 2)
  • Last published: 2022-04-11

Useful links