simulateData2 function

Simulate bivariate data for funLBM

Simulate bivariate data for funLBM

Simulate bivariate data according to the funLBM model with K=4 groups for rows and L=3 groups for columns.

simulateData2(n = 100, p = 100, t = 30)

Arguments

  • n: The number of rows (individuals) of the simulated data array,
  • p: The number of columns (functional variables) of the simulated data array,
  • t: The number of measures for the functions of the simulated data array.

Returns

The resulting object contains: - data1: data array of size n x p x t for first variable

  • data2: data array of size n x p x t for second variable

  • row_clust: Group memberships of rows

  • col_clust: Group memberships of columns

References

C. Bouveyron, L. Bozzi, J. Jacques and F.-X. Jollois, The Functional Latent Block Model for the Co-Clustering of Electricity Consumption Curves, Journal of the Royal Statistical Society, Series C, 2018 (https://doi.org/10.1111/rssc.12260).

See Also

funLBM

Examples

# Simulate data and co-clustering set.seed(12345) X = simulateData2(n = 50, p = 50, t = 15) # Co-clustering with funLBM out = funLBM(list(X$data1,X$data2),K=4,L=3) # Visualization of results plot(out,type='blocks') plot(out,type='proportions') plot(out,type='means') # Evaluating clustering results ari(out$col_clust,X$col_clust) ari(out$row_clust,X$row_clust)
  • Maintainer: Charles Bouveyron
  • License: GPL (>= 2)
  • Last published: 2022-04-11

Useful links