funMoDisco1.0.0 package

Motif Discovery in Functional Data

add_error_to_motif

Add Additive Error to Motif

add_motif

Add Motif to Base Curve

cluster_candidate_motifs_plot

cluster_candidate_motifs_plot

cluster_candidate_motifs

Cluster Candidate Motifs

compare_nodes

Compare Nodes

discoverMotifs

Functional Motif Discovery

dot-check_fits

Check Fits

dot-diss_d0_d1_L2

Dissimilarity Index for Multidimensional Curves

dot-domain

Domain Length Calculation for Curves

dot-find_min_diss

Find Minimum Dissimilarity

dot-find_occurrences

Find Occurrences of a Motif

dot-generate_coefficients

Generate Coefficients

dot-mapply_custom

Custom mapply Function for Parallel Processing

dot-resample

Resample Vector

dot-select_domain

.select_domain

dot-transform_list

Transform List Structure

dot-transform_to_matrix

Transform to Matrix

filter_candidate_motifs

Filter Candidate Motifs

find_recommended_path

Find Recommended Path in a Tree Structure

funMoDisco-package

funMoDisco: Motif Discovery in Functional Data

generate_background_curve

Generate Background Curve

generate_curve_vector

Generate Curve Vector from FD Object

generateCurves-motifSimulation-method

Generate Functional Curves with Embedded Motifs

generateCurves

Generate Functional Curves with Embedded Motifs

get_accolites

Get Accolites for a Given Leaf Label

get_minidend

Generate Minimum Dendrogram from Hierarchical Clustering

get_parents

Get Parent Nodes from a Given Node

get_path_complete

Get Complete Paths from a Dendrogram

initialChecks

Initial Checks for ProbKMA

motifs_search_plot

Plot Motif Search Results

motifs_search

Motif Search in Curves

motifSimulation-class

motifSimulationS4Class

motifSimulationApp

motifSimulationApp: A Shiny-Based GUI for Motif Simulation

motifSimulationBuilder

Create motifSimulation Object

padding

Pad a Matrix to a Specified Number of Rows

plot_motifs-motifSimulation-method

Plot Embedded Motifs in Functional Curves

plot_motifs

Plot Embedded Motifs in Functional Curves

probKMA_plot

Plot the Results of probKMA

probKMA_silhouette_filter

Filter Motifs from probKMA Results Based on Silhouette and Size Thresh...

probKMA_silhouette_plot

Plot Silhouette Index from probKMA Results

probKMA_wrap

Wrapper for the Probabilistic K-means Algorithm (ProbKMA)

ProbKMA

ProbKMA Class

recommend_node

Recommend Node from a Numeric Vector

to_motifDiscovery-list-method

to_motifDiscovery

to_motifDiscovery

to_motifDiscovery

Efficiently implementing two complementary methodologies for discovering motifs in functional data: ProbKMA and FunBIalign. Cremona and Chiaromonte (2023) "Probabilistic K-means with Local Alignment for Clustering and Motif Discovery in Functional Data" <doi:10.1080/10618600.2022.2156522> is a probabilistic K-means algorithm that leverages local alignment and fuzzy clustering to identify recurring patterns (candidate functional motifs) across and within curves, allowing different portions of the same curve to belong to different clusters. It includes a family of distances and a normalization to discover various motif types and learns motif lengths in a data-driven manner. It can also be used for local clustering of misaligned data. Di Iorio, Cremona, and Chiaromonte (2023) "funBIalign: A Hierarchical Algorithm for Functional Motif Discovery Based on Mean Squared Residue Scores" <doi:10.48550/arXiv.2306.04254> applies hierarchical agglomerative clustering with a functional generalization of the Mean Squared Residue Score to identify motifs of a specified length in curves. This deterministic method includes a small set of user-tunable parameters. Both algorithms are suitable for single curves or sets of curves. The package also includes a flexible function to simulate functional data with embedded motifs, allowing users to generate benchmark datasets for validating and comparing motif discovery methods.

  • Maintainer: Jacopo Di Iorio
  • License: GPL (>= 2)
  • Last published: 2025-04-15