ARest function

Estimation of Autoregressive (AR) Parameters

Estimation of Autoregressive (AR) Parameters

Estimate parameters ϕ\phi of autoregressive time series model [REMOVE_ME]Xt=i=1pϕiXti+et,[REMOVEME2] X_t = \sum_{i=1}^p\phi_iX_{t-i} + e_t, [REMOVE_ME_2]

by default using robust difference-based estimator and Bayesian information criterion (BIC) to select the order pp. This function is employed for time series filtering in the functions notrend_test, sync_test, and wavk_test.

ARest(x, ar.order = NULL, ar.method = "HVK", ic = c("BIC", "AIC", "none"))

Arguments

  • x: a vector containing a univariate time series. Missing values are not allowed.
  • ar.order: order of the autoregressive model when ic = "none", or the maximal order for IC-based filtering. Default is round(10*log10(length(x))), where x is the time series.
  • ar.method: method of estimating autoregression coefficients. Default "HVK" delivers robust difference-based estimates by if(!exists(".Rdpack.currefs")) .Rdpack.currefs <-new.env();Rdpack::insert_citeOnly(keys="Hall_VanKeilegom_2003;textual",package="funtimes",cached_env=.Rdpack.currefs) . Alternatively, options of ar function can be used, such as "burg", "ols", "mle", and "yw".
  • ic: information criterion used to select the order of autoregressive filter (AIC of BIC), considering models of orders p=p= 0,1,...,ar.order. If ic = "none", the AR(pp) model with p=p= ar.order is used, without order selection.

Returns

A vector of estimated AR coefficients. Returns numeric(0) if the final p=0p=0.

Description

Estimate parameters ϕ\phi of autoregressive time series model

Xt=i=1pϕiXti+et, X_t = \sum_{i=1}^p\phi_iX_{t-i} + e_t,

by default using robust difference-based estimator and Bayesian information criterion (BIC) to select the order pp. This function is employed for time series filtering in the functions notrend_test, sync_test, and wavk_test.

Details

The formula for information criteria used consistently for all methods:

IC=nln(σ^2)+(p+1)k, IC=n\ln(\hat{\sigma}^2) + (p + 1)k,

where nn = length(x), pp is the autoregressive order (p+1p + 1 is the number of model parameters), and kk is the penalty (k=ln(n)k = \ln(n) in BIC, and k=2k = 2 in AIC).

Examples

# Simulate a time series Y: Y <- arima.sim(n = 200, list(order = c(2, 0, 0), ar = c(-0.7, -0.1))) plot.ts(Y) # Estimate the coefficients: ARest(Y) # HVK, by default ARest(Y, ar.method = "yw") # Yule--Walker ARest(Y, ar.method = "burg") # Burg

References

if(!exists(".Rdpack.currefs")) .Rdpack.currefs <-new.env();Rdpack::insert_all_ref(.Rdpack.currefs)

See Also

ar, HVK, notrend_test, sync_test, wavk_test

Author(s)

Vyacheslav Lyubchich

  • Maintainer: Vyacheslav Lyubchich
  • License: GPL (>= 2)
  • Last published: 2023-03-21

Useful links