Estimate parameters ϕ of autoregressive time series model [REMOVE_ME]Xt=∑i=1pϕiXt−i+et,[REMOVEME2]
by default using robust difference-based estimator and Bayesian information criterion (BIC) to select the order p. This function is employed for time series filtering in the functions notrend_test, sync_test, and wavk_test.
ARest(x, ar.order =NULL, ar.method ="HVK", ic = c("BIC","AIC","none"))
Arguments
x: a vector containing a univariate time series. Missing values are not allowed.
ar.order: order of the autoregressive model when ic = "none", or the maximal order for IC-based filtering. Default is round(10*log10(length(x))), where x is the time series.
ar.method: method of estimating autoregression coefficients. Default "HVK" delivers robust difference-based estimates by if(!exists(".Rdpack.currefs")) .Rdpack.currefs <-new.env();Rdpack::insert_citeOnly(keys="Hall_VanKeilegom_2003;textual",package="funtimes",cached_env=.Rdpack.currefs) . Alternatively, options of ar function can be used, such as "burg", "ols", "mle", and "yw".
ic: information criterion used to select the order of autoregressive filter (AIC of BIC), considering models of orders p= 0,1,...,ar.order. If ic = "none", the AR(p) model with p=ar.order is used, without order selection.
Returns
A vector of estimated AR coefficients. Returns numeric(0) if the final p=0.
Description
Estimate parameters ϕ of autoregressive time series model
Xt=i=1∑pϕiXt−i+et,
by default using robust difference-based estimator and Bayesian information criterion (BIC) to select the order p. This function is employed for time series filtering in the functions notrend_test, sync_test, and wavk_test.
Details
The formula for information criteria used consistently for all methods:
IC=nln(σ^2)+(p+1)k,
where n = length(x), p is the autoregressive order (p+1 is the number of model parameters), and k is the penalty (k=ln(n) in BIC, and k=2 in AIC).
Examples
# Simulate a time series Y:Y <- arima.sim(n =200, list(order = c(2,0,0), ar = c(-0.7,-0.1)))plot.ts(Y)# Estimate the coefficients:ARest(Y)# HVK, by defaultARest(Y, ar.method ="yw")# Yule--WalkerARest(Y, ar.method ="burg")# Burg