HVK function

HVK Estimator

HVK Estimator

Estimate coefficients in nonparametric autoregression using the difference-based approach by if(!exists(".Rdpack.currefs")) .Rdpack.currefs <-new.env();Rdpack::insert_citeOnly(keys="Hall_VanKeilegom_2003;textual",package="funtimes",cached_env=.Rdpack.currefs) .

HVK(X, m1 = NULL, m2 = NULL, ar.order = 1)

Arguments

  • X: univariate time series. Missing values are not allowed.
  • m1, m2: subsidiary smoothing parameters. Default m1 = round(length(X)^(0.1)), m2 = round(length(X)^(0.5)).
  • ar.order: order of the nonparametric autoregression (specified by user).

Returns

Vector of length ar.order with estimated autoregression coefficients.

Details

First, autocovariances are estimated using formula (2.6) by if(!exists(".Rdpack.currefs")) .Rdpack.currefs <-new.env();Rdpack::insert_citeOnly(keys="Hall_VanKeilegom_2003;textual",package="funtimes",cached_env=.Rdpack.currefs) :

γ^(0)=1m2m1+1m=m1m212(nm)i=m+1n{(DmX)i}2, \hat{\gamma}(0)=\frac{1}{m_2-m_1+1}\sum_{m=m_1}^{m_2}\frac{1}{2(n-m)}\sum_{i=m+1}^{n}\{(D_mX)_i\}^2, γ^(j)=γ^(0)12(nj)i=j+1n{(DjX)i}2, \hat{\gamma}(j)=\hat{\gamma}(0)-\frac{1}{2(n-j)}\sum_{i=j+1}^n\{(D_jX)_i\}^2,

where nn = length(X) is sample size, DjD_j is a difference operator such that (DjX)i=XiXij(D_jX)_i=X_i-X_{i-j}. Then, Yule--Walker method is used to derive autoregression coefficients.

Examples

X <- arima.sim(n = 300, list(order = c(1, 0, 0), ar = c(0.6))) HVK(as.vector(X), ar.order = 1)

References

if(!exists(".Rdpack.currefs")) .Rdpack.currefs <-new.env();Rdpack::insert_all_ref(.Rdpack.currefs)

See Also

ar, ARest

Author(s)

Yulia R. Gel, Vyacheslav Lyubchich, Xingyu Wang

  • Maintainer: Vyacheslav Lyubchich
  • License: GPL (>= 2)
  • Last published: 2023-03-21

Useful links