Statistic for testing the parametric form of a regression function, suggested by if(!exists(".Rdpack.currefs")) .Rdpack.currefs <-new.env();Rdpack::insert_citeOnly(keys="Wang_etal_2008;textual",package="funtimes",cached_env=.Rdpack.currefs) .
WAVK(z, kn =NULL)
Arguments
z: filtered univariate time series if(!exists(".Rdpack.currefs")) .Rdpack.currefs <-new.env();Rdpack::insert_citeOnly(keys="@see formula (2.1) by@Wang_VanKeilegom_2007",package="funtimes", cached_env=.Rdpack.currefs) :
where $Y_i$ is observed time series of length $n$, $\hat{\theta}$
is an estimator of hypothesized parametric trend $f(\theta, t)$, and $\hat{\phi}_p=(\hat{\phi}_{1,n}, \ldots, \hat{\phi}_{p,n})'$
are estimated coefficients of an autoregressive filter of order $p$. Missing values are not allowed.
kn: length of the local window.
Returns
A list with following components: - Tn: test statistic based on artificial ANOVA and defined by if(!exists(".Rdpack.currefs")) .Rdpack.currefs <-new.env();Rdpack::insert_citeOnly(keys="Wang_VanKeilegom_2007;textual",package="funtimes",cached_env=.Rdpack.currefs)
as a difference of mean square for treatments (MST) and mean square for errors (MSE):
where $\{V_{t1}, \ldots, V_{tk_n}\}=\{Z_j: j\in W_{t}\}$, $W_t$ is a local window, $\overline{V}_{t.}$ and $\overline{V}_{..}$ are the mean of the $t$th group and the grand mean, respectively.
Tns: standardized version of Tn according to Theorem 3.1 by if(!exists(".Rdpack.currefs")) .Rdpack.currefs <-new.env();Rdpack::insert_citeOnly(keys="Wang_VanKeilegom_2007;textual",package="funtimes",cached_env=.Rdpack.currefs) :
where $n$ is the length and $sigma^2$ is the variance of the time series. Robust difference-based Rice's estimator if(!exists(".Rdpack.currefs")) .Rdpack.currefs \<-new.env();Rdpack::insert_citeOnly(keys="Rice_1984",package="funtimes",cached_env=.Rdpack.currefs)
is used to estimate $sigma^2$.
p.value: p-value for Tns based on its asymptotic N(0,1) distribution.