galamm0.2.1 package

Generalized Additive Latent and Mixed Models

anova.galamm

Compare likelihoods of galamm objects

coef.galamm

Extract galamm coefficients

confint.galamm

Confidence intervals for model parameters

deviance.galamm

Extract deviance of galamm object

extract_optim_parameters.galamm

Extract parameters from fitted model for use as initial values

factor_loadings.galamm

Extract factor loadings from galamm object

family.galamm

Extract family or families from fitted galamm

fitted.galamm

Extract model fitted values

fixef

Extract fixed effects from galamm objects

formula.galamm

Extract formula from fitted galamm object

galamm_control

Control values for galamm fit

galamm-package

galamm: Generalized Additive Latent and Mixed Models

galamm

Fit a generalized additive latent and mixed model

llikAIC

Extract log likelihood, AIC, and related statistics from a GALAMM

logLik.galamm

Extract Log-Likelihood of galamm Object

nobs.galamm

Extract the Number of Observations from a galamm Fit

plot_smooth.galamm

Plot smooth terms for galamm fits

plot.galamm

Diagnostic plots for galamm objects

predict.galamm

Predictions from a model at new data values

print.summary.galamm

Print method for summary GALAMM fits

print.VarCorr.galamm

Print method for variance-covariance objects

ranef.galamm

Extract random effects from galamm object.

residuals.galamm

Residuals of galamm objects

sigma.galamm

Extract square root of dispersion parameter from galamm object

sl

Set up smooth term with factor loading

summary.galamm

Summarizing GALAMM fits

t2l

Set up smooth term with factor loading

VarCorr

Extract variance and correlation components from model

vcov.galamm

Calculate variance-covariance matrix for GALAMM fit

Estimates generalized additive latent and mixed models using maximum marginal likelihood, as defined in Sorensen et al. (2023) <doi:10.1007/s11336-023-09910-z>, which is an extension of Rabe-Hesketh and Skrondal (2004)'s unifying framework for multilevel latent variable modeling <doi:10.1007/BF02295939>. Efficient computation is done using sparse matrix methods, Laplace approximation, and automatic differentiation. The framework includes generalized multilevel models with heteroscedastic residuals, mixed response types, factor loadings, smoothing splines, crossed random effects, and combinations thereof. Syntax for model formulation is close to 'lme4' (Bates et al. (2015) <doi:10.18637/jss.v067.i01>) and 'PLmixed' (Rockwood and Jeon (2019) <doi:10.1080/00273171.2018.1516541>).

  • Maintainer: Øystein Sørensen
  • License: GPL (>= 3)
  • Last published: 2024-08-18