Calculate Error Rates for randomForest model
Given an randomForest model object, calculate training set error, out-of-bag (OOB) error, and test set error.
rfErr(train.rf, train, test, group = "type")
train.rf
: Fitted randomForest model object.train
: Training set data frame.test
: Test set data frame.group
: Factor that identifies groupsVector that holds training set error, out-of-bag (OOB) error, and test set error rates.
## Not run: data(spam, package='kernlab') spam[,-58] <- scale(spam[,-58]) nr <- sample(1:nrow(spam)) spam01 <- spam[nr[1:3601],] ## Use for training, spam2 <- spam[nr[3602:4601],] ## Test spam01.rf <- randomForest(type ~ ., data=spam01) rfRates <- rfErr(train.rf=spam01.rf, train=spam01, test=spam2, group='type') ## End(Not run)
Useful links