Cross-validate a gbm
Functions for cross-validating gbm. These functions are used internally and are not intended for end-user direct usage.
gbmCrossVal( cv.folds, nTrain, n.cores, class.stratify.cv, data, x, y, offset, distribution, w, var.monotone, n.trees, interaction.depth, n.minobsinnode, shrinkage, bag.fraction, var.names, response.name, group ) gbmCrossValErr(cv.models, cv.folds, cv.group, nTrain, n.trees) gbmCrossValPredictions( cv.models, cv.folds, cv.group, best.iter.cv, distribution, data, y ) gbmCrossValModelBuild( cv.folds, cv.group, n.cores, i.train, x, y, offset, distribution, w, var.monotone, n.trees, interaction.depth, n.minobsinnode, shrinkage, bag.fraction, var.names, response.name, group ) gbmDoFold( X, i.train, x, y, offset, distribution, w, var.monotone, n.trees, interaction.depth, n.minobsinnode, shrinkage, bag.fraction, cv.group, var.names, response.name, group, s )
cv.folds
: The number of cross-validation folds.nTrain
: The number of training samples.n.cores
: The number of cores to use.class.stratify.cv
: Whether or not stratified cross-validation samples are used.data
: The data.x
: The model matrix.y
: The response variable.offset
: The offset.distribution
: The type of loss function. See gbm
.w
: Observation weights.var.monotone
: See gbm
.n.trees
: The number of trees to fit.interaction.depth
: The degree of allowed interactions. See gbm
.n.minobsinnode
: See gbm
.shrinkage
: See gbm
.bag.fraction
: See gbm
.var.names
: See gbm
.response.name
: See gbm
.group
: Used when distribution = "pairwise"
. See gbm
.cv.models
: A list containing the models for each fold.cv.group
: A vector indicating the cross-validation fold for each member of the training set.best.iter.cv
: The iteration with lowest cross-validation error.i.train
: Items in the training set.X
: Index (cross-validation fold) on which to subset.s
: Random seed.A list containing the cross-validation error and predictions.
These functions are not intended for end-user direct usage, but are used internally by gbm
.
J.H. Friedman (2001). "Greedy Function Approximation: A Gradient Boosting Machine," Annals of Statistics 29(5):1189-1232.
L. Breiman (2001). https://www.stat.berkeley.edu/users/breiman/randomforest2001.pdf.
gbm
Greg Ridgeway gregridgeway@gmail.com