predict.geolm_cmodStd function

Predict method for geostatistical models

Predict method for geostatistical models

predict calculates the predicted values at specified locations. The method can additionally provide the mean square prediction error (mspe) and perform conditional simulation.

## S3 method for class 'geolm_cmodStd' predict( object, newdata, nsim = 0, return_type = "SpatialPointsDataFrame", dmethod = "chol", compute_mspe = TRUE, sp = NULL, ... )

Arguments

  • object: An object produced by the geolm

    function.

  • newdata: An optional data frame in which to look for the coordinates at which to predict. If omitted, the observed data locations are used.

  • nsim: A non-negative integer indicating the number of realizations to sample at the specified coordinates using conditional simulation.

  • return_type: A character string indicating the type of object that should be returned. The default is "SpatialPointsDataFrame" for easy plotting of results (see Examples). Other options include "data.frame", "geardf", and "sf".

  • dmethod: The method used to decompose the covariance matrix for conditional simulation. Valid options are "chol", "eigen", and "svd". The default is "chol".

  • compute_mspe: A logical value indicating whether the mean square prediction error should be calculated. Default is TRUE.

  • sp: This argument will be deprecated in the future. Please use the return_type argument. A logical value indicating whether to object returned should be of class SpatialPointsDataFrame for easier plotting with the sp package. Default is NULL.

  • ...: Currently unimplemented.

Returns

A data.frame, SpatialPointsDataFrame, geardf, or sf

object with the kriging predictions pred, kriging variance/mean-square prediction error (mspe), the root mean-square prediction error mspe (rmspe), and the conditional simulations sim.1, sim.2, etc. sim.1, sim.2, etc.

Details

The newdata data frame must include the relevant covariates for the prediction locations, where the covariates are specified on the right side of the ~ in object$formula. newdata must also include the coordinates of the prediction locations, with these columns having the names provided in object$coordnames.

Examples

# generate response y = rnorm(10) # generate coordinates x1 = runif(10); x2 = runif(10) # data frame for observed data data = data.frame(y, x1, x2) # newdata must have columns with prediction coordinates newdata = data.frame(x1 = runif(5), x2 = runif(5)) # specify a standard covariance model mod = cmod_std(model = "exponential", psill = 1, r = 1) # geolm for universal kriging gearmod_uk = geolm(y ~ x1 + x2, data = data, mod = mod, coordnames = c("x1", "x2")) # prediction for universal kriging, with conditional simulation pred_uk = predict(gearmod_uk, newdata, nsim = 2) # demonstrate plotting abilities if return_type == "geardf" pred_geardf = predict(gearmod_uk, newdata, return_type = "geardf") plot(pred_geardf, "pred") plot(pred_geardf, interp = TRUE) # demonstrate plotting abilities if sp package installed if (requireNamespace("sp", quietly = TRUE)) { pred_spdf = predict(gearmod_uk, newdata, return_type = "SpatialPointsDataFrame") sp::spplot(pred_spdf, "pred") sp::spplot(pred_spdf) } # demonstrate plotting abilities if sf package installed if (requireNamespace("sf", quietly = TRUE)) { pred_sfdf = predict(gearmod_uk, newdata, return_type = "sf") plot(pred_sfdf["pred"]) plot(pred_sfdf) } # geolm for ordinary kriging gearmod_ok = geolm(y ~ 1, data = data, mod = mod, coordnames = c("x1", "x2")) # prediction for ordinary kriging pred_ok = predict(gearmod_ok, newdata) # geolm for simple kriging gearmod_sk = geolm(y ~ 1, data = data, mod = mod, coordnames = c("x1", "x2"), mu = 1) # prediction for simple kriging pred_sk = predict(gearmod_sk, newdata)

Author(s)

Joshua French

  • Maintainer: Joshua French
  • License: GPL (>= 2)
  • Last published: 2020-04-10

Useful links