Compute confidence intervals [quantile(s)] of indexes from bootPairs output
Compute confidence intervals [quantile(s)] of indexes from bootPairs output
Begin with the output of bootPairs function, a (n999 by p-1) matrix when there are p columns of data, bootQuantile produces a (k by p-1) mtx of quantile(s) of bootstrap ouput assuming that there are k quantiles needed.
out: output from bootPairs with p-1 columns and n999 rows
probs: quantile evaluation probabilities. The default is k=2, probs=c(.025,0.975) for a 95 percent confidence interval. Note that there are k=2 quantiles desired for each column with this specification
per100: logical (default per100=TRUE) to change the range of 'sum' to [-100, 100] values which are easier to interpret
Returns
CI k quantiles evaluated at probs as a matrix with k rows and quantile of pairwise p-1 indexes representing p-1 column pairs (fixing the first column in each pair) This function summarizes the output of of bootPairs(mtx) (a n999 by p-1 matrix) each containing resampled sum' values summarizing the weighted sums associated with all three criteria from the function silentPairs(mtx)`
applied to each bootstrap sample separately. #'
Examples
## Not run:options(np.messages =FALSE)set.seed(34);x=sample(1:10);y=sample(2:11)bb=bootPairs(cbind(x,y),n999=29)bootQuantile(bb)#gives summary stats for n999 bootstrap sum computationsbb=bootPairs(airquality,n999=999);options(np.messages=FALSE)bootQuantile(bb,tau=0.476)#signs for n999 bootstrap sum computationsdata('EuroCrime')attach(EuroCrime)bb=bootPairs(cbind(crim,off),n999=29)#col.1= crim causes off #hence positive signs are more intuitively meaningful.#note that n999=29 is too small for real problems, chosen for quickness here.bootQuantile(bb)# quantile matrix for n999 bootstrap sum computations## End(Not run)
References
Vinod, H. D. `Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, tools:::Rd_expr_doi("10.1080/03610918.2015.1122048")
Vinod, H. D. and Lopez-de-Lacalle, J. (2009). 'Maximum entropy bootstrap for time series: The meboot R package.' Journal of Statistical Software, Vol. 29(5), pp. 1-19.
Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://www.ssrn.com/abstract=2982128
See Also
See Also silentPairs.
Author(s)
Prof. H. D. Vinod, Economics Dept., Fordham University, NY