logit function

Estimation of a logit model

Estimation of a logit model

Maximum Likelihood (ML) estimation of a logit model.

logit(y, x, initial.values = NULL, lower = -Inf, upper = Inf, method = 2, lag.length = NULL, control = list(), eps.tol = .Machine$double.eps, solve.tol = .Machine$double.eps )

Arguments

  • y: numeric vector, the binary process
  • x: numeric matrix, the regressors
  • initial.values: NULL or a numeric vector with the initial parameter values passed on to the optimisation routine, nlminb. If NULL, the default, then the values are chosen automatically
  • lower: numeric vector, either of length 1 or the number of parameters to be estimated, see nlminb
  • upper: numeric vector, either of length 1 or the number of parameters to be estimated, see nlminb
  • method: an integer that determines the expression for the coefficient-covariance, see "details"
  • lag.length: NULL or an integer that determines the lag-length used in the robust coefficient covariance. If lag.length is an integer, then it is ignored unless method = 3
  • control: a list passed on to the control argument of nlminb
  • eps.tol: numeric, a small value that ensures the fitted zero-probabilities are not too small when the log-transformation is applied when computing the log-likelihood
  • solve.tol: numeric value passed on to the tol argument of solve, which is called whenever the coefficient-coariance matrix is computed. The value controls the toleranse for detecting linear dependence between columns when inverting a matrix

Details

No details for the moment.

Returns

A list.

References

No references for the moment.

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

See Also

nlminb, solve

Examples

##no examples for the moment