Simulate from a Multivariate Normal Distribution
Produces one or more samples from the specified multivariate normal distribution. Used in
outlierscaletest
.
mvrnormsim(n = 1, mu, Sigma, tol = 1e-6, empirical = FALSE)
n
: the number of samples required.mu
: a vector giving the means of the variables.Sigma
: a positive-definite symmetric matrix specifying the covariance matrix of the variables.tol
: tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma.empirical
: logical. If true, mu and Sigma specify the empirical not population mean and covariance matrix.If n = 1 a vector of the same length as mu, otherwise an n by length(mu) matrix with one sample in each row.
Original function mvrnorm
developed by Venables, W. N. & Ripley. in package MASS
, https://CRAN.R-project.org/package=MASS.
Venables, W. N. & Ripley, B. D. (2019): 'MASS: Support Functions and Datasets for Venables and Ripley's MASS'. https://CRAN.R-project.org/package=MASS
Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0
Venables, W. N. & Ripley, with modifications by Felix Pretis, https://felixpretis.climateeconometrics.org/
outlierscaletest
Sigma <- matrix(c(3,2,1,7),2,2) mvrnormsim(n=2, mu=c(1,2), Sigma)
Useful links