recursive function

Recursive estimation

Recursive estimation

Recursive estimation of coefficients and standard errors

recursive(object, spec="mean", std.errors=TRUE, from=40, tol=1e-07, LAPACK=FALSE, plot=TRUE, return=TRUE)

Arguments

  • object: an arx, gets or isat object
  • spec: 'mean' or 'variance'. If 'mean' (default), the the recursive estimates of the mean-equation are estimated
  • std.errors: logical. If TRUE (default), then the coefficient standard errors are also computed
  • from: integer. The starting point of the recursion
  • tol: numeric. The tolerance for linear dependency among regressors
  • LAPACK: logical, TRUE or FALSE (default). If true use LAPACK otherwise use LINPACK, see qr function
  • plot: NULL or logical. If TRUE, then the recursive coefficient estimates are plotted. If NULL (default), then the value set by options determines whether a plot is produced or not.
  • return: logical. If TRUE (default), then the recursive estimates are returned in a list

Returns

If return=TRUE, then a list is returned with the following components: - estimates: a zoo matrix with the recursive estimates

  • standard.errors: a zoo matrix with the standard errors

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

See Also

ols, qr, solve.qr

Examples

##generate random variates, estimate model: y <- rnorm(100) mX <- matrix(rnorm(4*100), 100, 4) mymodel <- arx(y, mc=TRUE, mxreg=mX) ##compute recursive estimates and plot them: recursive(mymodel)