student_t function

Scaled and shifted Student's t distribution

Scaled and shifted Student's t distribution

Density, distribution function, quantile function and random generation for the scaled and shifted Student's t distribution, parameterized by degrees of freedom (df), location (mu), and scale (sigma).

dstudent_t(x, df, mu = 0, sigma = 1, log = FALSE) pstudent_t(q, df, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qstudent_t(p, df, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rstudent_t(n, df, mu = 0, sigma = 1)

Arguments

  • x, q: vector of quantiles.
  • df: degrees of freedom (>0> 0, maybe non-integer). df = Inf is allowed.
  • mu: Location parameter (median)
  • sigma: Scale parameter
  • log, log.p: logical; if TRUE, probabilities p are given as log(p).
  • lower.tail: logical; if TRUE (default), probabilities are P[Xx]P[X \le x], otherwise, P[X>x]P[X > x].
  • p: vector of probabilities.
  • n: number of observations. If length(n) > 1, the length is taken to be the number required.

Returns

  • dstudent_t gives the density
  • pstudent_t gives the cumulative distribution function (CDF)
  • qstudent_t gives the quantile function (inverse CDF)
  • rstudent_t generates random draws.

The length of the result is determined by n for rstudent_t, and is the maximum of the lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.

Examples

library(dplyr) library(ggplot2) expand.grid( df = c(3,5,10,30), scale = c(1,1.5) ) %>% ggplot(aes(y = 0, dist = "student_t", arg1 = df, arg2 = 0, arg3 = scale, color = ordered(df))) + stat_slab(p_limits = c(.01, .99), fill = NA) + scale_y_continuous(breaks = NULL) + facet_grid( ~ scale) + labs( title = "dstudent_t(x, df, 0, sigma)", subtitle = "Scale (sigma)", y = NULL, x = NULL ) + theme_ggdist() + theme(axis.title = element_text(hjust = 0))

See Also

parse_dist() and parsing distribution specs and the stat_slabinterval()

family of stats for visualizing them.