Density, distribution function, quantile function and random generation for the scaled and shifted Student's t distribution, parameterized by degrees of freedom (df), location (mu), and scale (sigma).
dstudent_t(x, df, mu =0, sigma =1, log =FALSE)pstudent_t(q, df, mu =0, sigma =1, lower.tail =TRUE, log.p =FALSE)qstudent_t(p, df, mu =0, sigma =1, lower.tail =TRUE, log.p =FALSE)rstudent_t(n, df, mu =0, sigma =1)
Arguments
x, q: vector of quantiles.
df: degrees of freedom (>0, maybe non-integer). df = Inf is allowed.
mu: Location parameter (median)
sigma: Scale parameter
log, log.p: logical; if TRUE, probabilities p are given as log(p).
lower.tail: logical; if TRUE (default), probabilities are P[X≤x], otherwise, P[X>x].
p: vector of probabilities.
n: number of observations. If length(n) > 1, the length is taken to be the number required.
Returns
dstudent_t gives the density
pstudent_t gives the cumulative distribution function (CDF)
qstudent_t gives the quantile function (inverse CDF)
rstudent_t generates random draws.
The length of the result is determined by n for rstudent_t, and is the maximum of the lengths of the numerical arguments for the other functions.
The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.
Examples
library(dplyr)library(ggplot2)expand.grid( df = c(3,5,10,30), scale = c(1,1.5))%>% ggplot(aes(y =0, dist ="student_t", arg1 = df, arg2 =0, arg3 = scale, color = ordered(df)))+ stat_slab(p_limits = c(.01,.99), fill =NA)+ scale_y_continuous(breaks =NULL)+ facet_grid(~ scale)+ labs( title ="dstudent_t(x, df, 0, sigma)", subtitle ="Scale (sigma)", y =NULL, x =NULL)+ theme_ggdist()+ theme(axis.title = element_text(hjust =0))
See Also
parse_dist() and parsing distribution specs and the stat_slabinterval()