ggdmc0.2.6.0 package

Cognitive Models

BuildDMI

Bind data and models

BuildModel

Create a model object

BuildPrior

Specifying Parameter Prior Distributions

check_pvec

Does a model object specify a correct p.vector

ConvertChains

Prepare posterior samples for plotting functions version 1

dbeta_lu

A modified dbeta function

dcauchy_l

A modified dcauchy functions

dconstant

A pseudo constant function to get constant densities

deviance.model

Calculate the statistics of model complexity

dgamma_l

A modified dgamma function

DIC

Deviance information criteria

dlnorm_l

A modified dlnorm functions

dtnorm

Truncated Normal Distribution

effectiveSize

Calculate effective sample sizes

gelman

Potential scale reduction factor

get_os

Retrieve information of operating system

GetNsim

Get a n-cell matrix

GetParameterMatrix

Constructs a ns x npar matrix,

GetPNames

Extract parameter names from a model object

ggdmc

Bayeisan computation of response time models

iseffective

Model checking functions

isflat

Model checking functions

ismixed

Model checking functions

isstuck

Model checking functions

likelihood

Calculate log likelihoods

mcmc_list.model

Create a MCMC list

PickStuck

Which chains get stuck

plot_prior

Plot prior distributions

print.prior

Print Prior Distribution

random

Generate random numbers

rlba_norm

Generate Random Deviates of the LBA Distribution

rprior

Parameter Prior Distributions

simulate.model

Simulate response time data

StartNewsamples

Start new model fits

summary.model

Summarise posterior samples

summary_mcmc_list

Summary statistic for posterior samples

TableParameters

Table response and parameter

theta2mcmclist

Convert theta to a mcmc List

unstick_one

Unstick posterios samples (One subject)

Hierarchical Bayesian models. The package provides tools to fit two response time models, using the population-based Markov Chain Monte Carlo.

  • Maintainer: Yi-Shin Lin
  • License: GPL-2
  • Last published: 2019-04-29