Multivariate logistic models
Fits a logistic regression model to multivariate binary responses.
fitmlogit(..., C = c(), D = c(), data, mit = 100, ep = 1e-80, acc = 1e-04)
...
: Model formulae of marginal logistic models for each response and for each association parameters (log-odds ratios).C
: Matrix of equality constraints.D
: Matrix of inequality cosntraints.data
: A data frame containing the responses and the explanatory variables.mit
: A positive integer: maximum number of iterations. Default: 100
.ep
: A tolerance used in the algorithm: default 1e-80
.acc
: A tolerance used in the algorithm: default 1e-4
.See Evans and Forcina (2011).
LL: The maximized log-likelihood.
be: The vector of the Maximum likelihood estimates of the parameters.
S: The estimated asymptotic covariance matrix.
P: The estimated cell probabilities for each individual.
Evans, R.J. and Forcina, A. (2013). Two algorithms for fitting constrained marginal models. Computational Statistics and Data Analysis, 66, 1-7.
Antonio Forcina, Giovanni M. Marchetti
glm
data(surdata) out1 <- fitmlogit(A ~X, B ~ Z, cbind(A, B) ~ X*Z, data = surdata) out1$beta out2 <- fitmlogit(A ~X, B ~ Z, cbind(A, B) ~ 1, data = surdata) out2$beta