ggmlR0.5.1 package

'GGML' Tensor Operations for Machine Learning

dequantize_row_iq2_xxs

Dequantize Row (IQ)

dequantize_row_mxfp4

Dequantize Row (MXFP4)

dequantize_row_q2_K

Dequantize Row (K-quants)

dequantize_row_q4_0

Dequantize Row (Q4_0)

dequantize_row_tq1_0

Dequantize Row (Ternary)

ggml_abort_is_r_enabled

Check if R Abort Handler is Enabled

ggml_abs_inplace

Absolute Value In-place (Graph)

ggml_abs

Absolute Value (Graph)

ggml_add_inplace

Element-wise Addition In-place (Graph)

ggml_add

Add tensors

ggml_add1

Add Scalar to Tensor (Graph)

ggml_are_same_layout

Check if Two Tensors Have the Same Layout

ggml_are_same_shape

Compare Tensor Shapes

ggml_are_same_stride

Compare Tensor Strides

ggml_argmax

Argmax (Graph)

ggml_argsort

Argsort - Get Sorting Indices (Graph)

ggml_backend_alloc_ctx_tensors

Allocate Context Tensors to Backend

ggml_backend_buffer_clear

Clear buffer memory

ggml_backend_buffer_free

Free Backend Buffer

ggml_backend_buffer_get_size

Get Backend Buffer Size

ggml_backend_buffer_get_usage

Get buffer usage

ggml_backend_buffer_is_host

Check if buffer is host memory

ggml_backend_buffer_is_multi_buffer

Check if buffer is a multi-buffer

ggml_backend_buffer_name

Get Backend Buffer Name

ggml_backend_buffer_reset

Reset buffer

ggml_backend_buffer_set_usage

Set buffer usage hint

ggml_backend_buffer_usage_any

Buffer usage: Any

ggml_backend_buffer_usage_compute

Buffer usage: Compute

ggml_backend_buffer_usage_weights

Buffer usage: Weights

ggml_backend_cpu_init

Initialize CPU Backend

ggml_backend_cpu_set_n_threads

Set CPU Backend Threads

ggml_backend_dev_by_name

Get device by name

ggml_backend_dev_by_type

Get device by type

ggml_backend_dev_count

Get number of available devices

ggml_backend_dev_description

Get device description

ggml_backend_dev_get_props

Get device properties

ggml_backend_dev_get

Get device by index

ggml_backend_dev_init

Initialize backend from device

ggml_backend_dev_memory

Get device memory

ggml_backend_dev_name

Get device name

ggml_backend_dev_offload_op

Check if device should offload operation

ggml_backend_dev_supports_buft

Check if device supports buffer type

ggml_backend_dev_supports_op

Check if device supports operation

ggml_backend_dev_type

Get device type

ggml_backend_device_register

Register a device

ggml_backend_device_type_accel

Device type: Accelerator

ggml_backend_device_type_cpu

Device type: CPU

ggml_backend_device_type_gpu

Device type: GPU

ggml_backend_device_type_igpu

Device type: Integrated GPU

ggml_backend_event_free

Free event

ggml_backend_event_new

Create new event

ggml_backend_event_record

Record event

ggml_backend_event_synchronize

Synchronize event

ggml_backend_event_wait

Wait for event

ggml_backend_free

Free Backend

ggml_backend_get_device

Get device from backend

ggml_backend_graph_compute_async

Compute graph asynchronously

ggml_backend_graph_compute

Compute Graph with Backend

ggml_backend_graph_plan_compute

Execute graph plan

ggml_backend_graph_plan_create

Create graph execution plan

ggml_backend_graph_plan_free

Free graph execution plan

ggml_backend_init_best

Initialize best available backend

ggml_backend_init_by_name

Initialize backend by name

ggml_backend_init_by_type

Initialize backend by type

ggml_backend_load_all

Load all available backends

ggml_backend_load

Load backend from dynamic library

ggml_backend_multi_buffer_alloc_buffer

Allocate multi-buffer

ggml_backend_multi_buffer_set_usage

Set usage for all buffers in a multi-buffer

ggml_backend_name

Get Backend Name

ggml_backend_reg_by_name

Get backend registry by name

ggml_backend_reg_count

Get number of registered backends

ggml_backend_reg_dev_count

Get number of devices in registry

ggml_backend_reg_dev_get

Get device from registry

ggml_backend_reg_get

Get backend registry by index

ggml_backend_reg_name

Get registry name

ggml_backend_register

Register a backend

ggml_backend_sched_alloc_graph

Allocate graph on scheduler

ggml_backend_sched_free

Free backend scheduler

ggml_backend_sched_get_backend

Get backend from scheduler

ggml_backend_sched_get_n_backends

Get number of backends in scheduler

ggml_backend_sched_get_n_copies

Get number of tensor copies

ggml_backend_sched_get_n_splits

Get number of graph splits

ggml_backend_sched_get_tensor_backend

Get tensor backend assignment

ggml_backend_sched_graph_compute_async

Compute graph asynchronously

ggml_backend_sched_graph_compute

Compute graph using scheduler

ggml_backend_sched_new

Create a new backend scheduler

ggml_backend_sched_reserve

Reserve memory for scheduler

ggml_backend_sched_reset

Reset scheduler

ggml_backend_sched_set_tensor_backend

Set tensor backend assignment

ggml_backend_sched_synchronize

Synchronize scheduler

ggml_backend_synchronize

Synchronize backend

ggml_backend_tensor_copy_async

Copy tensor asynchronously between backends

ggml_backend_tensor_get_async

Get tensor data asynchronously

ggml_backend_tensor_get_data

Get Tensor Data via Backend

ggml_backend_tensor_set_async

Set tensor data asynchronously

ggml_backend_tensor_set_data

Set Tensor Data via Backend

ggml_backend_unload

Unload backend

ggml_blck_size

Get Block Size

ggml_build_forward_expand

Build forward expand

ggml_can_repeat

Check If Tensor Can Be Repeated

ggml_ceil_inplace

Ceiling In-place (Graph)

ggml_ceil

Ceiling (Graph)

ggml_clamp

Clamp (Graph)

ggml_concat

Concatenate Tensors (Graph)

ggml_cont

Make Contiguous (Graph)

ggml_conv_1d

1D Convolution (Graph)

ggml_conv_2d

2D Convolution (Graph)

ggml_conv_transpose_1d

Transposed 1D Convolution (Graph)

ggml_cos

Cosine (Graph)

ggml_count_equal

Count Equal Elements (Graph)

ggml_cpu_add

Element-wise Addition (CPU Direct)

ggml_cpu_features

Get All CPU Features

ggml_cpu_get_rvv_vlen

Get RISC-V Vector Length

ggml_cpu_get_sve_cnt

Get SVE Vector Length (ARM)

ggml_cpu_has_amx_int8

CPU Feature Detection - AMX INT8

ggml_cpu_has_arm_fma

CPU Feature Detection - ARM FMA

ggml_cpu_has_avx_vnni

CPU Feature Detection - AVX-VNNI

ggml_cpu_has_avx

CPU Feature Detection - AVX

ggml_cpu_has_avx2

CPU Feature Detection - AVX2

ggml_cpu_has_avx512_bf16

CPU Feature Detection - AVX-512 BF16

ggml_cpu_has_avx512_vbmi

CPU Feature Detection - AVX-512 VBMI

ggml_cpu_has_avx512_vnni

CPU Feature Detection - AVX-512 VNNI

ggml_cpu_has_avx512

CPU Feature Detection - AVX-512

ggml_cpu_has_bmi2

CPU Feature Detection - BMI2

ggml_cpu_has_dotprod

CPU Feature Detection - Dot Product (ARM)

ggml_cpu_has_f16c

CPU Feature Detection - F16C

ggml_cpu_has_fma

CPU Feature Detection - FMA

ggml_cpu_has_fp16_va

CPU Feature Detection - FP16 Vector Arithmetic (ARM)

ggml_cpu_has_llamafile

CPU Feature Detection - Llamafile

ggml_cpu_has_matmul_int8

CPU Feature Detection - INT8 Matrix Multiply (ARM)

ggml_cpu_has_neon

CPU Feature Detection - NEON (ARM)

ggml_cpu_has_riscv_v

CPU Feature Detection - RISC-V Vector

ggml_cpu_has_sme

CPU Feature Detection - SME (ARM)

ggml_cpu_has_sse3

CPU Feature Detection - SSE3

ggml_cpu_has_ssse3

CPU Feature Detection - SSSE3

ggml_cpu_has_sve

CPU Feature Detection - SVE (ARM)

ggml_cpu_has_vsx

CPU Feature Detection - VSX (PowerPC)

ggml_cpu_has_vxe

CPU Feature Detection - VXE (IBM z/Architecture)

ggml_cpu_has_wasm_simd

CPU Feature Detection - WebAssembly SIMD

ggml_cpu_mul

Element-wise Multiplication (CPU Direct)

ggml_cpy

Copy Tensor with Type Conversion (Graph)

ggml_cycles_per_ms

Get CPU Cycles per Millisecond

ggml_cycles

Get CPU Cycles

ggml_diag_mask_inf_inplace

Diagonal Mask with -Inf In-place (Graph)

ggml_diag_mask_inf

Diagonal Mask with -Inf (Graph)

ggml_diag_mask_zero

Diagonal Mask with Zero (Graph)

ggml_diag

Diagonal Matrix (Graph)

ggml_div_inplace

Element-wise Division In-place (Graph)

ggml_div

Element-wise Division (Graph)

ggml_dup_inplace

Duplicate Tensor In-place (Graph)

ggml_dup_tensor

Duplicate Tensor

ggml_dup

Duplicate Tensor (Graph)

ggml_element_size

Get Element Size

ggml_elu_inplace

ELU Activation In-place (Graph)

ggml_elu

ELU Activation (Graph)

ggml_estimate_memory

Estimate Required Memory

ggml_exp_inplace

Exponential In-place (Graph)

ggml_exp

Exponential (Graph)

ggml_flash_attn_back

Flash Attention Backward (Graph)

ggml_flash_attn_ext

Flash Attention (Graph)

ggml_floor_inplace

Floor In-place (Graph)

ggml_floor

Floor (Graph)

ggml_free

Free GGML context

ggml_ftype_to_ggml_type

Convert ftype to ggml_type

ggml_gallocr_alloc_graph

Allocate Memory for Graph

ggml_gallocr_free

Free Graph Allocator

ggml_gallocr_get_buffer_size

Get Graph Allocator Buffer Size

ggml_gallocr_new

Create Graph Allocator

ggml_gallocr_reserve

Reserve Memory for Graph

ggml_geglu_quick

GeGLU Quick (Fast GeGLU) (Graph)

ggml_geglu_split

GeGLU Split (Graph)

ggml_geglu

GeGLU (GELU Gated Linear Unit) (Graph)

ggml_gelu_erf

Exact GELU Activation (Graph)

ggml_gelu_inplace

GELU Activation In-place (Graph)

ggml_gelu_quick

GELU Quick Activation (Graph)

ggml_gelu

GELU Activation (Graph)

ggml_get_f32

Get F32 data

ggml_get_i32

Get I32 Data

ggml_get_max_tensor_size

Get Maximum Tensor Size

ggml_get_mem_size

Get Context Memory Size

ggml_get_n_threads

Get Number of Threads

ggml_get_name

Get Tensor Name

ggml_get_no_alloc

Get No Allocation Mode

ggml_get_op_params_f32

Get Float Op Parameter

ggml_get_op_params_i32

Get Integer Op Parameter

ggml_get_op_params

Get Tensor Operation Parameters

ggml_get_rows_back

Get Rows Backward (Graph)

ggml_get_rows

Get Rows by Indices (Graph)

ggml_get_unary_op

Get Unary Operation from Tensor

GGML_GLU_OP_REGLU

GLU Operation Types

ggml_glu_split

Generic GLU Split (Graph)

ggml_glu

Generic GLU (Gated Linear Unit) (Graph)

ggml_graph_compute_with_ctx

Compute Graph with Context (Alternative Method)

ggml_graph_compute

Compute graph

ggml_graph_dump_dot

Export Graph to DOT Format

ggml_graph_get_tensor

Get Tensor from Graph by Name

ggml_graph_n_nodes

Get Number of Nodes in Graph

ggml_graph_node

Get Graph Node

ggml_graph_overhead

Get Graph Overhead

ggml_graph_print

Print Graph Information

ggml_graph_reset

Reset Graph (for backpropagation)

ggml_graph_view

Create a View of a Subgraph

ggml_group_norm_inplace

Group Normalization In-place (Graph)

ggml_group_norm

Group Normalization (Graph)

ggml_hardsigmoid

Hard Sigmoid Activation (Graph)

ggml_hardswish

Hard Swish Activation (Graph)

ggml_im2col

Image to Column (Graph)

ggml_init_auto

Create Context with Auto-sizing

ggml_init

Initialize GGML context

ggml_is_available

Check if GGML is available

ggml_is_contiguous_0

Check Tensor Contiguity (Dimension 0)

ggml_is_contiguous_1

Check Tensor Contiguity (Dimensions >= 1)

ggml_is_contiguous_2

Check Tensor Contiguity (Dimensions >= 2)

ggml_is_contiguous_channels

Check Channel-wise Contiguity

ggml_is_contiguous_rows

Check Row-wise Contiguity

ggml_is_contiguous

Check if Tensor is Contiguous

ggml_is_contiguously_allocated

Check If Tensor is Contiguously Allocated

ggml_is_permuted

Check if Tensor is Permuted

ggml_is_quantized

Check If Type is Quantized

ggml_is_transposed

Check if Tensor is Transposed

ggml_l2_norm_inplace

L2 Normalization In-place (Graph)

ggml_l2_norm

L2 Normalization (Graph)

ggml_leaky_relu

Leaky ReLU Activation (Graph)

ggml_log_inplace

Natural Logarithm In-place (Graph)

ggml_log_is_r_enabled

Check if R Logging is Enabled

ggml_log_set_default

Restore Default GGML Logging

ggml_log_set_r

Enable R-compatible GGML Logging

ggml_log

Natural Logarithm (Graph)

ggml_mean

Mean (Graph)

ggml_mul_inplace

Element-wise Multiplication In-place (Graph)

ggml_mul_mat_id

Matrix Multiplication with Expert Selection (Graph)

ggml_mul_mat

Matrix Multiplication (Graph)

ggml_mul

Multiply tensors

ggml_n_dims

Get Number of Dimensions

ggml_nbytes

Get number of bytes

ggml_neg_inplace

Negation In-place (Graph)

ggml_neg

Negation (Graph)

ggml_nelements

Get number of elements

ggml_new_f32

Create Scalar F32 Tensor

ggml_new_i32

Create Scalar I32 Tensor

ggml_new_tensor_1d

Create 1D tensor

ggml_new_tensor_2d

Create 2D tensor

ggml_new_tensor_3d

Create 3D Tensor

ggml_new_tensor_4d

Create 4D Tensor

ggml_new_tensor

Create Tensor with Arbitrary Dimensions

ggml_norm_inplace

Layer Normalization In-place (Graph)

ggml_norm

Layer Normalization (Graph)

ggml_nrows

Get Number of Rows

ggml_op_can_inplace

Check if Operation Can Be Done In-place

ggml_op_desc

Get Operation Description from Tensor

ggml_op_name

Get Operation Name

ggml_op_symbol

Get Operation Symbol

ggml_opt_alloc

Allocate graph for evaluation

ggml_opt_context_optimizer_type

Get optimizer type from context

ggml_opt_dataset_data

Get data tensor from dataset

ggml_opt_dataset_free

Free optimization dataset

ggml_opt_dataset_get_batch

Get batch from dataset

ggml_opt_dataset_init

Create a new optimization dataset

ggml_opt_dataset_labels

Get labels tensor from dataset

ggml_opt_dataset_ndata

Get number of datapoints in dataset

ggml_opt_dataset_shuffle

Shuffle dataset

ggml_opt_default_params

Get default optimizer parameters

ggml_opt_epoch

Run one training epoch

ggml_opt_eval

Evaluate model

ggml_opt_fit

Fit model to dataset

ggml_opt_free

Free optimizer context

ggml_opt_grad_acc

Get gradient accumulator for a tensor

ggml_opt_init

Initialize optimizer context

ggml_opt_inputs

Get inputs tensor from optimizer context

ggml_opt_labels

Get labels tensor from optimizer context

ggml_opt_loss_type_cross_entropy

Loss type: Cross Entropy

ggml_opt_loss_type_mean

Loss type: Mean

ggml_opt_loss_type_mse

Loss type: Mean Squared Error

ggml_opt_loss_type_sum

Loss type: Sum

ggml_opt_loss

Get loss tensor from optimizer context

ggml_opt_ncorrect

Get number of correct predictions tensor

ggml_opt_optimizer_name

Get optimizer name

ggml_opt_optimizer_type_adamw

Optimizer type: AdamW

ggml_opt_optimizer_type_sgd

Optimizer type: SGD

ggml_opt_outputs

Get outputs tensor from optimizer context

ggml_opt_pred

Get predictions tensor from optimizer context

ggml_opt_prepare_alloc

Prepare allocation for non-static graphs

ggml_opt_reset

Reset optimizer context

ggml_opt_result_accuracy

Get accuracy from result

ggml_opt_result_free

Free optimization result

ggml_opt_result_init

Initialize optimization result

ggml_opt_result_loss

Get loss from result

ggml_opt_result_ndata

Get number of datapoints from result

ggml_opt_result_pred

Get predictions from result

ggml_opt_result_reset

Reset optimization result

ggml_opt_static_graphs

Check if using static graphs

ggml_out_prod

Outer Product (Graph)

ggml_pad

Pad Tensor with Zeros (Graph)

ggml_permute

Permute Tensor Dimensions (Graph)

ggml_pool_1d

1D Pooling (Graph)

ggml_pool_2d

2D Pooling (Graph)

ggml_print_mem_status

Print Context Memory Status

ggml_print_objects

Print Objects in Context

ggml_quant_block_info

Get Quantization Block Info

ggml_quantize_chunk

Quantize Data Chunk

ggml_quantize_free

Free Quantization Resources

ggml_quantize_init

Initialize Quantization Tables

ggml_quantize_requires_imatrix

Check if Quantization Requires Importance Matrix

ggml_reglu_split

ReGLU Split (Graph)

ggml_reglu

ReGLU (ReLU Gated Linear Unit) (Graph)

ggml_relu_inplace

ReLU Activation In-place (Graph)

ggml_relu

ReLU Activation (Graph)

ggml_repeat_back

Repeat Backward (Graph)

ggml_repeat

Repeat (Graph)

ggml_reset

Reset GGML Context

ggml_reshape_1d

Reshape to 1D (Graph)

ggml_reshape_2d

Reshape to 2D (Graph)

ggml_reshape_3d

Reshape to 3D (Graph)

ggml_reshape_4d

Reshape to 4D (Graph)

ggml_rms_norm_back

RMS Norm Backward (Graph)

ggml_rms_norm_inplace

RMS Normalization In-place (Graph)

ggml_rms_norm

RMS Normalization (Graph)

ggml_rope_ext_back

RoPE Extended Backward (Graph)

ggml_rope_ext_inplace

Extended RoPE Inplace (Graph)

ggml_rope_ext

Extended RoPE with Frequency Scaling (Graph)

ggml_rope_inplace

Rotary Position Embedding In-place (Graph)

ggml_rope_multi_inplace

Multi-RoPE Inplace (Graph)

ggml_rope_multi

Multi-RoPE for Vision Models (Graph)

ggml_rope

Rotary Position Embedding (Graph)

ggml_round_inplace

Round In-place (Graph)

ggml_round

Round (Graph)

ggml_scale_inplace

Scale Tensor In-place (Graph)

ggml_scale

Scale (Graph)

ggml_set_1d

Set 1D Tensor Region (Graph)

ggml_set_2d

Set 2D Tensor Region (Graph)

ggml_set_abort_callback_default

Restore Default Abort Behavior

ggml_set_abort_callback_r

Enable R-compatible Abort Handling

ggml_set_f32

Set F32 data

ggml_set_i32

Set I32 Data

ggml_set_n_threads

Set Number of Threads

ggml_set_name

Set Tensor Name

ggml_set_no_alloc

Set No Allocation Mode

ggml_set_op_params_f32

Set Float Op Parameter

ggml_set_op_params_i32

Set Integer Op Parameter

ggml_set_op_params

Set Tensor Operation Parameters

ggml_set_zero

Set Tensor to Zero

ggml_set

Set Tensor Region (Graph)

ggml_sgn

Sign Function (Graph)

ggml_sigmoid_inplace

Sigmoid Activation In-place (Graph)

ggml_sigmoid

Sigmoid Activation (Graph)

ggml_silu_back

SiLU Backward (Graph)

ggml_silu_inplace

SiLU Activation In-place (Graph)

ggml_silu

SiLU Activation (Graph)

ggml_sin

Sine (Graph)

ggml_soft_max_ext_back_inplace

Extended Softmax Backward Inplace (Graph)

ggml_soft_max_ext_back

Softmax Backward Extended (Graph)

ggml_soft_max_ext_inplace

Extended Softmax Inplace (Graph)

ggml_soft_max_ext

Extended Softmax with Masking and Scaling (Graph)

ggml_soft_max_inplace

Softmax In-place (Graph)

ggml_soft_max

Softmax (Graph)

ggml_softplus_inplace

Softplus Activation In-place (Graph)

ggml_softplus

Softplus Activation (Graph)

GGML_SORT_ORDER_ASC

Sort Order Constants

ggml_sqr_inplace

Square In-place (Graph)

ggml_sqr

Square (Graph)

ggml_sqrt_inplace

Square Root In-place (Graph)

ggml_sqrt

Square Root (Graph)

ggml_step

Step Function (Graph)

ggml_sub_inplace

Element-wise Subtraction In-place (Graph)

ggml_sub

Element-wise Subtraction (Graph)

ggml_sum_rows

Sum Rows (Graph)

ggml_sum

Sum (Graph)

ggml_swiglu_split

SwiGLU Split (Graph)

ggml_swiglu

SwiGLU (Swish/SiLU Gated Linear Unit) (Graph)

ggml_tanh_inplace

Tanh Activation In-place (Graph)

ggml_tanh

Tanh Activation (Graph)

ggml_tensor_overhead

Get Tensor Overhead

ggml_tensor_shape

Get Tensor Shape

ggml_tensor_type

Get Tensor Type

ggml_test

Test GGML

ggml_time_init

Initialize GGML Timer

ggml_time_ms

Get Time in Milliseconds

ggml_time_us

Get Time in Microseconds

ggml_top_k

Top-K Indices (Graph)

ggml_transpose

Transpose (Graph)

GGML_TYPE_F32

GGML Data Types

ggml_type_name

Get Type Name

ggml_type_size

Get Type Size in Bytes

ggml_type_sizef

Get Type Size as Float

ggml_unary_op_name

Get Unary Operation Name

ggml_upscale

Upscale Tensor (Graph)

ggml_used_mem

Get Used Memory

ggml_version

Get GGML version

ggml_view_1d

1D View with Byte Offset (Graph)

ggml_view_2d

2D View with Byte Offset (Graph)

ggml_view_3d

3D View with Byte Offset (Graph)

ggml_view_4d

4D View with Byte Offset (Graph)

ggml_view_tensor

View Tensor

ggml_vulkan_available

Check if Vulkan support is available

ggml_vulkan_backend_name

Get Vulkan backend name

ggml_vulkan_device_count

Get number of Vulkan devices

ggml_vulkan_device_description

Get Vulkan device description

ggml_vulkan_device_memory

Get Vulkan device memory

ggml_vulkan_free

Free Vulkan backend

ggml_vulkan_init

Initialize Vulkan backend

ggml_vulkan_is_backend

Check if backend is Vulkan

ggml_vulkan_list_devices

List all Vulkan devices

ggml_vulkan_status

Print Vulkan status

ggml_with_temp_ctx

Execute with Temporary Context

ggmlR-package

ggmlR: 'GGML' Tensor Operations for Machine Learning

iq2xs_free_impl

Free IQ2 Quantization Tables

iq2xs_init_impl

Initialize IQ2 Quantization Tables

iq3xs_free_impl

Free IQ3 Quantization Tables

iq3xs_init_impl

Initialize IQ3 Quantization Tables

quantize_iq2_xxs

Quantize Data (IQ)

quantize_mxfp4

Quantize Data (MXFP4)

quantize_q2_K

Quantize Data (K-quants)

quantize_q4_0

Quantize Data (Q4_0)

quantize_row_iq3_xxs_ref

Quantize Row Reference (IQ)

quantize_row_mxfp4_ref

Quantize Row Reference (MXFP4)

quantize_row_q2_K_ref

Quantize Row Reference (K-quants)

quantize_row_q4_0_ref

Quantize Row Reference (Basic)

quantize_row_tq1_0_ref

Quantize Row Reference (Ternary)

quantize_tq1_0

Quantize Data (Ternary)

rope_types

RoPE Mode Constants

Provides 'R' bindings to the 'GGML' tensor library for efficient machine learning computation. Implements core tensor operations including element-wise arithmetic, reshaping, and matrix multiplication. Supports neural network layers (attention, convolutions, normalization), activation functions, and quantization. Features optimization/training API with 'AdamW' (Adam with Weight decay) and 'SGD' (Stochastic Gradient Descent) optimizers, 'MSE' (Mean Squared Error) and cross-entropy losses. Multi-backend support with CPU and optional 'Vulkan' GPU (Graphics Processing Unit) acceleration. See <https://github.com/ggml-org/ggml> for more information about the underlying library.

  • Maintainer: Yuri Baramykov
  • License: MIT + file LICENSE
  • Last published: 2026-02-09 19:00:02 UTC