Computes Harrel's C index for predictions from a "coxnet" object.
Cindex(pred, y, weights = rep(1, nrow(y)))
Arguments
pred: Predictions from a "coxnet" object
y: a survival response object - a matrix with two columns "time" and "status"; see documentation for "glmnet"
weights: optional observation weights
Details
Computes the concordance index, taking into account censoring.
Examples
set.seed(10101)N =1000p =30nzc = p/3x = matrix(rnorm(N * p), N, p)beta = rnorm(nzc)fx = x[, seq(nzc)]%*% beta/3hx = exp(fx)ty = rexp(N, hx)tcens = rbinom(n = N, prob =0.3, size =1)# censoring indicatory = cbind(time = ty, status =1- tcens)# y=Surv(ty,1-tcens) with library(survival)fit = glmnet(x, y, family ="cox")pred = predict(fit, newx = x)apply(pred,2, Cindex, y=y)cv.glmnet(x, y, family ="cox", type.measure ="C")
References
Harrel Jr, F. E. and Lee, K. L. and Mark, D. B. (1996) Tutorial in biostatistics: multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing error, Statistics in Medicine, 15, pages 361--387.