Elastic net model paths for some generalized linear models
Elastic net model paths for some generalized linear models
This package fits lasso and elastic-net model paths for regression, logistic and multinomial regression using coordinate descent. The algorithm is extremely fast, and exploits sparsity in the input x matrix where it exists. A variety of predictions can be made from the fitted models.
package
Details
Package:
glmnet
Type:
Package
Version:
1.0
Date:
2008-05-14
License:
What license is it under?
Very simple to use. Accepts x,y data for regression models, and produces the regularization path over a grid of values for the tuning parameter lambda. Only 5 functions: glmnet
predict.glmnet
plot.glmnet
print.glmnet
coef.glmnet
Examples
x = matrix(rnorm(100*20),100,20)y = rnorm(100)g2 = sample(1:2,100, replace =TRUE)g4 = sample(1:4,100, replace =TRUE)fit1 = glmnet(x, y)predict(fit1, newx = x[1:5,], s = c(0.01,0.005))predict(fit1, type ="coef")plot(fit1, xvar ="lambda")fit2 = glmnet(x, g2, family ="binomial")predict(fit2, type ="response", newx = x[2:5,])predict(fit2, type ="nonzero")fit3 = glmnet(x, g4, family ="multinomial")predict(fit3, newx = x[1:3,], type ="response", s =0.01)
References
Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent (2010), Journal of Statistical Software, Vol. 33(1), 1-22, tools:::Rd_expr_doi("10.18637/jss.v033.i01") .
Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol. 39(5), 1-13, tools:::Rd_expr_doi("10.18637/jss.v039.i05") .
Tibshirani,Robert, Bien, J., Friedman, J., Hastie, T.,Simon, N.,Taylor, J. and Tibshirani, Ryan. (2012) Strong Rules for Discarding Predictors in Lasso-type Problems, JRSSB, Vol. 74(2), 245-266, https://arxiv.org/abs/1011.2234.
Hastie, T., Tibshirani, Robert and Tibshirani, Ryan (2020) Best Subset, Forward Stepwise or Lasso? Analysis and Recommendations Based on Extensive Comparisons, Statist. Sc. Vol. 35(4), 579-592, https://arxiv.org/abs/1707.08692.