Geostatistics for Compositional Analysis
Empirical structural function specification
Quick plotting of empirical and theoretical logratio variograms Quick ...
Write a regionalized data set in GSLIB format
Cross-validation errror measures
Cross-validation errror measures
Fit an LMC to an empirical variogram
Get the mask info out of a spatial data object
Set or get the i-th data frame of a data.frame stack
Download the Tellus survey data set (NI)
Compute accuracy and precision
Flow anamorphosis transform Compute a transformation that gaussianizes...
Backward gaussian anamorphosis backward transformation to multivariate...
Forward gaussian anamorphosis forward transformation to multivariate g...
Produce anisotropy scaling matrix from angle and anisotropy ratios
Force a matrix to be anisotropy range matrix,
Convert to anisotropy scaling matrix
Force a matrix to be anisotropy range matrix,
Convert to anisotropy scaling matrix
Convert a stacked data frame into an array
Recast a model to the variogram model of package "compositions"
Express a direction as a director vector
Convert a gmCgram object to an (evaluable) function
Convert theoretical structural functions to gmCgram format
Convert empirical structural function to gmEVario format
Recast spatial object to gmSpatialModel format
Convert a regionalized data container to gstat
Represent an empirical variogram in "gstatVariogram" format
Convert a stacked data frame into a list of data.frames
Recast compositional variogram model to format LMCAnisCompo
Recast empirical variogram to format logratioVariogram
Convert empirical variogram to "logratioVariogramAnisotropy"
Convert an LMC variogram model to gstat format
Create a parameter set specifying a LU decomposition simulation algori...
Colored biplot for gemeralised diagonalisations Colored biplot method ...
Constructs a mask for a grid
Create a data frame stack
Return the dimnames of a DataFrameStack
Create a parameter set specifying a direct sampling algorithm
Apply Functions Over Array or DataFrameStack Margins
parameters for Spatial Gaussian methods of any kind
parameters for Gaussian Simulation methods
parameters for Multiple-Point Statistics methods
Neighbourhood description
Parameter specification for a spatial simulation algorithm
General description of a spatial data container
Parameter specification for any spatial method
Conditional spatial model data container
MPS training image class
General description of a spatial model
Validation strategy description
Superclass for grid or nothing
Compute covariance matrix oout of locations
Cokriging of all sorts, internal function
Internal function, conditional turning bands realisations
Workhorse function for direct sampling
Empirical variogram or covariance function in 2D
Empirical variogram or covariance function in 3D
Reorganisation of cokriged compositions
extract information about the original data, if available
Create a matrix of logcontrasts and name prefix
Internal function, unconditional turning bands realisations
Check presence of missings check presence of missings in a data.frame
Plot variogram maps for anisotropic logratio variograms
Image method for mask objects
Plot an image of gridded data
Check for any anisotropy class
Check for anisotropy of a theoretical variogram
Create a parameter set of local for neighbourhood specification.
Specify the leave-one-out strategy for validation of a spatial model
Length, and number of columns or rows
Create a anisotropic model for regionalized compositions
Logratio variogram of a compositional data
Empirical logratio variogram calculation
Generalised diagonalisations Calculate several generalized diagonalisa...
Construct a Gaussian gmSpatialModel for regionalized compositions
Construct a Multi-Point gmSpatialModel for regionalized compositions
Construct a Gaussian gmSpatialModel for regionalized multivariate data
Mean accuracy
Average measures of spatial decorrelation
Structural function model specification
Number of directions of an empirical variogram
Specify a strategy for validation of a spatial model
Test for lack of spatial correlation
Multiple maps Matrix of maps showing different combinations of compone...
Plot method for accuracy curves
Draw cuves for covariance/variogram models
Plot empirical variograms
Plot variogram lines of empirical directional logratio variograms
Plotting method for swarmPlot objects
Combination of gmCgram variogram structures
Precision calculations
Predict method for generalised diagonalisation objects
Compute model variogram valuesEvaluate the variogram model provided at...
Predict method for objects of class 'gmSpatialModel'
Print method for mask objects
Compositional maps, pairwise logratios Matrix of maps showing differen...
Create a parameter set specifying a gaussian sequential simulation alg...
Generate D-variate variogram models
Set or get the ordering of a grid
Set a mask on an object
Reorder data in a grid
Compute diagonalisation measures
Construct a regionalized composition / reorder compositional simulatio...
Construct a regionalized multivariate data
Spectral colors palette based on the RColorBrewer::brewer.pal(11,"Spec...
Spherifying transform Compute a transformation that spherifies a certa...
Get name/index of the stacking dimension of a Spatial object
Get/set name/index of (non)stacking dimensions
Extract rows of a DataFrameStack
Subsetting of gmCgram variogram structures
Subsetting of logratioVariogram objects
Subsetting of gmCgram variogram structures
Plot a swarm of calculated output through a DataFrameStack
Swath plots
Create a parameter set specifying a turning bands simulation algorithm
Unmask a masked object
Validate a spatial model
Variogram method for gmSpatialModel objects
Quick plotting of empirical and theoretical variograms Quick and dirty...
Quick plotting of empirical and theoretical variograms Quick and dirty...
Support for geostatistical analysis of multivariate data, in particular data with restrictions, e.g. positive amounts, compositions, distributional data, microstructural data, etc. It includes descriptive analysis and modelling for such data, both from a two-point Gaussian perspective and multipoint perspective. The methods mainly follow Tolosana-Delgado, Mueller and van den Boogaart (2018) <doi:10.1007/s11004-018-9769-3>.