Computes the bread of the sandwich covariance matrix
## S3 method for class 'gmm'bread(x,...)## S3 method for class 'gel'bread(x,...)## S3 method for class 'tsls'bread(x,...)
Arguments
x: A fitted model of class gmm or gel.
...: Other arguments when bread is applied to another class object
Details
When the weighting matrix is not the optimal one, the covariance matrix of the estimated coefficients is: (G′WG)−1G′WVWG(G′WG)−1, where G=dgˉ/dθ, W is the matrix of weights, and V is the covariance matrix of the moment function. Therefore, the bread is (G′WG)−1, which is the second derivative of the objective function.
The method if not yet available for gel objects.
Returns
A k×k matrix (see details).
References
Zeileis A (2006), Object-oriented Computation of Sandwich Estimators. Journal of Statistical Software, 16 (9), 1--16. URL tools:::Rd_expr_doi("10.18637/jss.v016.i09") .
Examples
# See \code{\link{gmm}} for more details on this example.# With the identity matrix # bread is the inverse of (G'G)n <-1000x <- rnorm(n, mean =4, sd =2)g <-function(tet, x){ m1 <-(tet[1]- x) m2 <-(tet[2]^2-(x - tet[1])^2) m3 <- x^3- tet[1]*(tet[1]^2+3*tet[2]^2) f <- cbind(m1, m2, m3) return(f)}Dg <-function(tet, x){ jacobian <- matrix(c(1,2*(-tet[1]+mean(x)),-3*tet[1]^2-3*tet[2]^2,0,2*tet[2],-6*tet[1]*tet[2]), nrow=3,ncol=2) return(jacobian)}res <- gmm(g, x, c(0,0), grad = Dg,weightsMatrix=diag(3))G <- Dg(res$coef, x)bread(res)solve(crossprod(G))