It produces confidence intervals for the coefficients from gel or gmm estimation.
## S3 method for class 'gel'confint(object, parm, level =0.95, lambda =FALSE, type = c("Wald","invLR","invLM","invJ"), fact =3, corr =NULL,...)## S3 method for class 'gmm'confint(object, parm, level =0.95,...)## S3 method for class 'ategel'confint(object, parm, level =0.95, lambda =FALSE, type = c("Wald","invLR","invLM","invJ"), fact =3, corr =NULL, robToMiss=TRUE,...)## S3 method for class 'confint'print(x, digits =5,...)
Arguments
object: An object of class gel or gmm returned by the function gel or gmm
parm: A specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
level: The confidence level
lambda: If set to TRUE, the confidence intervals for the Lagrange multipliers are produced.
type: 'Wald' is the usual symetric confidence interval. The thee others are based on the inversion of the LR, LM, and J tests.
fact: This parameter control the span of search for the inversion of the test. By default we search within plus or minus 3 times the standard error of the coefficient estimate.
corr: This numeric scalar is meant to apply a correction to the critical value, such as a Bartlett correction. This value depends on the model (See Owen; 2001)
x: An object of class confint produced by confint.gel and confint.gmm
digits: The number of digits to be printed
robToMiss: If TRUE, the confidence interval is based on the standard errors that are robust to misspecification
...: Other arguments when confint is applied to another classe object
Returns
It returns a matrix with the first column being the lower bound and the second the upper bound.
References
Hansen, L.P. (1982), Large Sample Properties of Generalized Method of Moments Estimators. Econometrica, 50 , 1029-1054, Hansen, L.P. and Heaton, J. and Yaron, A.(1996), Finit-Sample Properties of Some Alternative GMM Estimators. Journal of Business and Economic Statistics, 14
262-280. Owen, A.B. (2001), Empirical Likelihood. Monographs on Statistics and Applied Probability 92, Chapman and Hall/CRC
Examples
#################n =500phi<-c(.2,.7)thet <-0sd <-.2x <- matrix(arima.sim(n = n, list(order = c(2,0,1), ar = phi, ma = thet, sd = sd)), ncol =1)y <- x[7:n]ym1 <- x[6:(n-1)]ym2 <- x[5:(n-2)]H <- cbind(x[4:(n-3)], x[3:(n-4)], x[2:(n-5)], x[1:(n-6)])g <- y ~ ym1 + ym2
x <- H
t0 <- c(0,.5,.5)resGel <- gel(g, x, t0)confint(resGel)confint(resGel, level =0.90)confint(resGel, lambda =TRUE)########################resGmm <- gmm(g, x)confint(resGmm)confint(resGmm, level =0.90)## Confidence interval with inversion of the LR, LM or J test.##############################################################set.seed(112233)x <- rt(40,3)y <- x+rt(40,3)# Simple interval on the meanres <- gel(x~1,~1, method="Brent", lower=-4, upper=4)confint(res, type ="invLR")confint(res)# Using a Bartlett correctionk <- mean((x-mean(x))^4)/sd(x)^4s <- mean((x-mean(x))^3)/sd(x)^3a <- k/2-s^2/3corr <-1+a/40confint(res, type ="invLR", corr=corr)# Interval on the sloperes <- gel(y~x,~x)confint(res,"x", type="invLR")confint(res,"x")