It produces the summary table of marginal effects for GLM estimation with GEL. Only implemented for ATEgel.
## S3 method for class 'ategel'marginal(object,...)
Arguments
object: An object of class ategel returned by the function ATEgel
...: Other arguments for other methods
Returns
It returns a matrix with the marginal effects, the standard errors based on the Delta method when the link is nonlinear, the t-ratios, and the pvalues.
References
Owen, A.B. (2001), Empirical Likelihood. Monographs on Statistics and Applied Probability 92, Chapman and Hall/CRC
Examples
## We create some artificial data with unbalanced groups and binary outcomegenDat <-function(n){ eta=c(-1,.5,-.25,-.1) Z <- matrix(rnorm(n*4),ncol=4) b <- c(27.4,13.7,13.7,13.7) bZ <- c(Z%*%b) Y1 <- as.numeric(rnorm(n, mean=210+bZ)>220) Y0 <- as.numeric(rnorm(n, mean=200-.5*bZ)>220) etaZ <- c(Z%*%eta) pZ <- exp(etaZ)/(1+exp(etaZ)) T <- rbinom(n,1, pZ) Y <- T*Y1+(1-T)*Y0
X1 <- exp(Z[,1]/2) X2 <- Z[,2]/(1+exp(Z[,1])) X3 <-(Z[,1]*Z[,3]/25+0.6)^3 X4 <-(Z[,2]+Z[,4]+20)^2 data.frame(Y=Y, cbind(X1,X2,X3,X4), T=T)}dat <- genDat(200)res <- ATEgel(Y~T,~X1+X2+X3+X4, data=dat, type="ET", family="logit")summary(res)marginal(res)