It extracts the matrix of variances and covariances from gmm or gel objects.
## S3 method for class 'gmm'vcov(object,...)## S3 method for class 'gel'vcov(object, lambda =FALSE,...)## S3 method for class 'tsls'vcov(object, type=c("Classical","HC0","HC1","HAC"), hacProp = list(),...)## S3 method for class 'ategel'vcov(object, lambda =FALSE, robToMiss =TRUE,...)
Arguments
object: An object of class gmm or gmm returned by the function gmm or gel
lambda: If set to TRUE, the covariance matrix of the Lagrange multipliers is produced.
type: Type of covariance matrix for the meat
hacProp: A list of arguments to pass to kernHAC
robToMiss: If TRUE, it computes the robust to misspecification covariance matrix
...: Other arguments when vcov is applied to another class object
Details
For tsls(), if vcov is set to a different value thand "Classical", a sandwich covariance matrix is computed.
Returns
A matrix of variances and covariances
Examples
# GMM #n =500phi<-c(.2,.7)thet <-0sd <-.2x <- matrix(arima.sim(n = n,list(order = c(2,0,1), ar = phi, ma = thet, sd = sd)), ncol =1)y <- x[7:n]ym1 <- x[6:(n-1)]ym2 <- x[5:(n-2)]H <- cbind(x[4:(n-3)], x[3:(n-4)], x[2:(n-5)], x[1:(n-6)])g <- y ~ ym1 + ym2
x <- H
res <- gmm(g, x)vcov(res)## GEL ##t0 <- c(0,.5,.5)res <- gel(g, x, t0)vcov(res)vcov(res, lambda =TRUE)