with φ^n=μ^nλ^n, where μ^n,λ^n are the maximum likelihood estimators for μ and λ, respectively, the parameters of the inverse Gaussian distribution. Furthermore Z^jk=φ^n(Yj+Yk+a), where Yi=μ^nXi for (Xi)i=1,...,n, a sequence of independent observations of a nonnegative random variable X. To ensure numerical stability of the implementation the exponentially scaled complementary error function erfce(x) is used: erfce(x)=exp(x2)erfc(x), with erfc(x)=2∫x∞exp(−t2)dt/π. The null hypothesis is rejected for large values of the test statistic HKn,a(1).
Examples
HK1(rmutil::rinvgauss(20,2,1))
References
Henze, N. and Klar, B. (2002) "Goodness-of-fit tests for the inverse Gaussian distribution based on the empirical Laplace transform", Annals of the Institute of Statistical Mathematics, 54(2):425-444. tools:::Rd_expr_doi("https://doi.org/10.1023/A:1022442506681")