gollh function

Log-Likelihood function of GO-GARCH models

Log-Likelihood function of GO-GARCH models

This function returns the negative of the log-Likelihood function for GO-GARCH models. latin1

gollh(params, object, garchlist)

Arguments

  • params: Vector of initial values for theta.
  • object: An object of class Goinit or an extension thereof.
  • garchlist: List, elements are passed to garchFit.

Details

The log-Likelihood function of GO-GARCH models is given as:

Lθ,α,β=12t=1Tmlog(2π)+logZθZθ+logHt+yHt1yt L_{\theta, \alpha, \beta} = - \frac{1}{2} \sum_{t=1}^T m \log(2\pi)+ \log|Z_\theta Z_\theta '| + \log|H_t| + y' H_t^{-1}y_t

whereby Z=PΔ12U0Z = P \Delta^{\frac{1}{2}} U_0, yt=Z1xty_t = Z^{-1}x_t and HtH_t is the conditional variance matrix of the independent components.

Returns

  • negll: Scalar, the negative value of the log-Likelihood function.

References

Van der Weide, Roy (2002), GO-GARCH: A Multivariate Generalized Orthogonal GARCH Model, Journal of Applied Econometrics, 17(5) , 549 -- 564.

Author(s)

Bernhard Pfaff

See Also

garchFit

  • Maintainer: Bernhard Pfaff
  • License: GPL (>= 2)
  • Last published: 2022-04-29

Useful links