gpboost1.5.5 package

Combining Tree-Boosting with Gaussian Process and Mixed Effects Models

coords_test

Example data for the GPBoost package

coords

Example data for the GPBoost package

dim

Dimensions of an gpb.Dataset

dimnames.gpb.Dataset

Handling of column names of gpb.Dataset

fit.GPModel

Fits a GPModel

fit

Generic 'fit' method for a GPModel

fitGPModel

Fits a GPModel

get_aux_pars.GPModel

Get (estimated) auxiliary (additional) parameters of the likelihood

get_aux_pars

Get (estimated) auxiliary (additional) parameters of the likelihood

get_coef.GPModel

Get (estimated) linear regression coefficients

get_coef

Get (estimated) linear regression coefficients

get_cov_pars.GPModel

Get (estimated) covariance parameters

get_cov_pars

Get (estimated) covariance parameters

get_nested_categories

Auxiliary function to create categorical variables for nested grouped ...

getinfo

Get information of an gpb.Dataset object

gpb_shared_params

Shared parameter docs

gpb.convert_with_rules

Data preparator for GPBoost datasets with rules (integer)

gpb.cv

CV function for number of boosting iterations

gpb.Dataset.construct

Construct Dataset explicitly

gpb.Dataset.create.valid

Construct validation data

gpb.Dataset

Construct gpb.Dataset object

gpb.Dataset.save

Save gpb.Dataset to a binary file

gpb.Dataset.set.categorical

Set categorical feature of gpb.Dataset

gpb.Dataset.set.reference

Set reference of gpb.Dataset

gpb.dump

Dump GPBoost model to json

gpb.get.eval.result

Get record evaluation result from booster

gpb.grid.search.tune.parameters

Function for choosing tuning parameters

gpb.importance

Compute feature importance in a model

gpb.interprete

Compute feature contribution of prediction

gpb.load

Load GPBoost model

gpb.model.dt.tree

Parse a GPBoost model json dump

gpb.plot.importance

Plot feature importance as a bar graph

gpb.plot.interpretation

Plot feature contribution as a bar graph

gpb.plot.part.dep.interact

Plot interaction partial dependence plots

gpb.plot.partial.dependence

Plot partial dependence plots

gpb.save

Save GPBoost model

gpb.train

Main training logic for GBPoost

gpboost

Train a GPBoost model

GPModel_shared_params

Documentation for parameters shared by GPModel, gpb.cv, and `gpboo...

GPModel

Create a GPModel object

group_data_test

Example data for the GPBoost package

group_data

Example data for the GPBoost package

loadGPModel

Load a GPModel from a file

neg_log_likelihood.GPModel

Evaluate the negative log-likelihood

neg_log_likelihood

Evaluate the negative log-likelihood

predict_training_data_random_effects.GPModel

Predict ("estimate") training data random effects for a GPModel

predict_training_data_random_effects

Predict ("estimate") training data random effects for a GPModel

predict.gpb.Booster

Prediction function for gpb.Booster objects

predict.GPModel

Make predictions for a GPModel

readRDS.gpb.Booster

readRDS for gpb.Booster models

saveGPModel

Save a GPModel

saveRDS.gpb.Booster

saveRDS for gpb.Booster models

set_optim_params.GPModel

Set parameters for estimation of the covariance parameters

set_optim_params

Set parameters for estimation of the covariance parameters

set_prediction_data.GPModel

Set prediction data for a GPModel

set_prediction_data

Set prediction data for a GPModel

setinfo

Set information of an gpb.Dataset object

slice

Slice a dataset

summary.GPModel

Summary for a GPModel

X_test

Example data for the GPBoost package

X

Example data for the GPBoost package

y

Example data for the GPBoost package

An R package that allows for combining tree-boosting with Gaussian process and mixed effects models. It also allows for independently doing tree-boosting as well as inference and prediction for Gaussian process and mixed effects models. See <https://github.com/fabsig/GPBoost> for more information on the software and Sigrist (2022, JMLR) <https://www.jmlr.org/papers/v23/20-322.html> and Sigrist (2023, TPAMI) <doi:10.1109/TPAMI.2022.3168152> for more information on the methodology.

  • Maintainer: Fabio Sigrist
  • License: Apache License (== 2.0) | file LICENSE
  • Last published: 2024-12-20