graphClustering function

Hierarchical graph clustering algorithm

Hierarchical graph clustering algorithm

Applies the hierarchical graph clustering algorithm to a collection of networks and fits a finite mixture model of stochastic block models to the data

graphClustering( allAdj, hyperParam = list(alpha = 0.5, eta = 0.5, zeta = 0.5, lambda = 0.5), returnInitial = FALSE, nbClust = NULL, nbSBMBlocks = Inf, initCountStat = NULL, initDeltaICL = NULL, nbCores = 1 )

Arguments

  • allAdj: list of adjacency matrices
  • hyperParam: hyperparameters of prior distributions
  • returnInitial: Boolean. Return SBM parameters from initialization or not. Default is FALSE.
  • nbClust: desired number of clusters. Default NULL, which means that the number of clusters is chosen automatically via the ICL criterion
  • nbSBMBlocks: upper bound for the number of blocks in the SBMs of the mixture components. Default is Inf
  • initCountStat: initial count statistics may be provided to the method. Default is NULL.
  • initDeltaICL: initial deltaICL-matrix may be provided to the method. Default is NULL.
  • nbCores: number of cores for parallelization

Returns

list with the following fields: graphGroupsisthegraphclustering,graphGroups is the graph clustering, nodeClusterings is a list with the node labels for each networks, thetaMixSBMcontainstheestimatedparameterofthemixtureofSBMs,thetaMixSBM contains the estimated parameter of the mixture of SBMs, ICL is the value of the ICL criterion of the final clustering, histGraphGroupstracesthehistoryoftheclusteraggregations,histGraphGroups traces the history of the cluster aggregations, histDeltaICL traces the evolution of the deltaICL value, $histFusedClusters traces the history of the aggregated cluster numbers

Examples

theta <- list(pi=c(.5,.5), gamma=matrix((1:4)/8,2,2)) obs <- rCollectSBM(rep(10,4), theta)$listGraphs res <- graphClustering(obs, nbCores=1)
  • Maintainer: Tabea Rebafka
  • License: GPL-2
  • Last published: 2023-06-07

Useful links