graphMomentsClustering function

Graph clustering method using graph moments

Graph clustering method using graph moments

Graph clustering method based on graph moments by Mukherjee et al. (2017)

graphMomentsClustering(Networks, nbMoments = 3, nbClusters)

Arguments

  • Networks: list of adjacency matrices
  • nbMoments: order of the largest graph moments to be considered
  • nbClusters: desired number of clusters

Returns

vector with the clustering of the networks

Examples

param <- vector('list', 3) param[[1]] <- list(prop = 1/3, # component 1 : alpha > beta alpha = .04, beta = .02, deltaIn = 100, deltaOut = 100, R = 500 ) param[[2]] <- list(prop = 1/3, # component 2 : just permute alpha and beta ; alpha = .01, beta = .02, deltaIn = 100, deltaOut = .1, R = 1000 ) param[[3]] <- list(prop = 1/3, # component 3 : alpha=beta alpha = .015, beta = .015, deltaIn = .1, deltaOut = .1, R = 1000 ) obs <- sampleDPAMixture(M=20, param) res <- graphMomentsClustering(obs$listAdj, 3, 3) table(res, obs$graphGroups)
  • Maintainer: Tabea Rebafka
  • License: GPL-2
  • Last published: 2023-06-07

Useful links