Cross validation for selecting optimal precision parameter in SBA method.
Cross validation for selecting optimal precision parameter in SBA method.
The performance of Stochastic Blockmodel Approximation (SBA) method is contingent on the number of blocks it finds during estimation process, which is rougly determined by a precision parameter delta. cv.SBA
tests multiple of delta values to find the optimal one that minimizes the cross validation risk. Note that the optimal delta is not bound to be a single value.
cv.SBA(A, vecdelta = seq(0.1,1, by =0.1))
Arguments
A: either
Case 1.: an (n×n) binary adjacency matrix, or
Case 2.: a vector containing multiple of (n×n) binary adjacency matrices.
vecdelta: a vector containing target delta values to be tested.
Returns
a named list containing
optdelta: optimal delta values that minimize the cross validation risk J.
J: cross validation risk values.
Examples
## Not run:## generate a graphon of type No.8 with 3 clustersW = gmodel.preset(3,id=8)## create a probability matrix for 100 nodesgraphW = gmodel.block(W,n=100)P = graphW$P
## draw 15 observations from a given probability matrixA = gmodel.P(P,rep=15)## cross validate SBA algorithm over different deltasrescv = cv.SBA(A,vecdelta=c(0.1,0.5,0.9))print(rescv$optdelta)## End(Not run)