est.LG function

Estimate graphons based on empirical degrees

Estimate graphons based on empirical degrees

est.LG takes a 2-stage approach. First it adopts largest gap criterion on empirical degrees to estimate blocks of a given network under Stochastic Blockmodel framework. Then a consistent histogram estimator is utilized to estimate graphons based on estimated blocks in a given network.

est.LG(A, K = 2)

Arguments

  • A: an (n×n)(n\times n) binary adjacency matrix.
  • K: the number of blocks provided by an user.

Returns

a named list containing

  • H: a (K×K)(K\times K) matrix of 3D histogram.
  • P: an (n×n)(n\times n) corresponding probability matrix.
  • B: a length-KK list where each element is a vector of nodes/indices for each cluster.

Examples

## generate a graphon of type No.5 with 3 clusters W = gmodel.preset(3,id=10) ## create a probability matrix for 20 nodes graphW = gmodel.block(W,n=20) P = graphW$P ## draw 23 observations from a given probability matrix A = gmodel.P(P,rep=23,symmetric.out=TRUE) ## run LG algorithm with a rough guess for K=2,3,4 res2 = est.LG(A,K=2) res3 = est.LG(A,K=3) res4 = est.LG(A,K=4) ## compare true probability matrix and estimated ones opar = par(no.readonly=TRUE) par(mfrow=c(2,2), pty="s") image(P, main="original P matrix") image(res2$P, main="LG with K=2") image(res3$P, main="LG with K=3") image(res4$P, main="LG with K=4") par(opar)

References

Rdpack::insert_ref(key="Channarond2011",package="graphon")

Rdpack::insert_ref(key="chan2014",package="graphon")

See Also

est.SBA

  • Maintainer: Kisung You
  • License: MIT + file LICENSE
  • Last published: 2021-08-13

Useful links